Bifurcation of homoclinic orbits to a saddle-focus in reversible systems with SO(2)-symmetry

被引:12
作者
Afendikov, A
Mielke, A
机构
[1] MV Keldysh Appl Math Inst, Moscow, Russia
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1006/jdeq.1999.3675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study reversible, SO(2)-invariant vector fields in WS depending on a real parameter epsilon which possess for epsilon = 0 a primary family of homoclinic orbits TalphaHo, alpha is an element of S-1. Under a transversality condition with respect to epsilon the existence of homoclinic n-pulse solutions is demonstrated for a sequence of parameter values epsilon(k)((n)) --> 0 for k --> infinity. The existence of cascades of 2(l)3(m)-pulse solutions follows by showing their transversality and then using induction. The method relies on the construction of an SO(2)-equivariant Poincare map which, after factorization, is a composition of two involutions: A logarithmic twist map and a smooth global map. Reversible periodic orbits of this map corresponds to reversible periodic or homoclinic solutions of the original problem. As an application we treat the steady complex Ginzburg-Landau equation for which a primary homoclinic solution is known explicitly. (C) 1999 Academic Press.
引用
收藏
页码:370 / 402
页数:33
相关论文
共 25 条
[1]   BIFURCATIONS OF POISEUILLE FLOW BETWEEN PARALLEL PLATES - 3-DIMENSIONAL SOLUTIONS WITH LARGE SPANWISE WAVELENGTH [J].
AFENDIKOV, A ;
MIELKE, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (02) :101-127
[2]  
AFENDIKOV AL, 1999, IN PRESS Z ANGEW MAT
[3]  
AFENDIKOV AL, 1999, IN PRESS DOKLADY RUS
[4]  
[Anonymous], 1992, TOPICS BIFURCATION T
[5]  
Arnol'd VI, 1983, GEOMETRICAL METHODS
[6]  
Bredon G E, 1972, Introduction to compact transformation groups, V46
[7]  
BRJUNO AD, 1971, T MOSCOW MATH SOC, V25, P131
[8]   Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics [J].
Champneys, AR .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) :158-186
[9]  
CHAMPNEYS AR, 1998, 1198 DANSE FREIE U B
[10]   AN EXAMPLE OF BIFURCATION TO HOMOCLINIC ORBITS [J].
CHOW, SN ;
HALE, JK ;
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (03) :351-373