Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors

被引:84
作者
Guan, X [1 ]
Stege, J
Kim, M
Dahmani, Z
Fan, N
Heifetz, P
Barbas, CF
Briggs, SP
机构
[1] Torrey Mesa Res Inst, San Diego, CA 92121 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
floral development; APETALA3; APETALA1;
D O I
10.1073/pnas.192412899
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zinc finger transcription factors (TFs(ZF)) were designed and applied to transgene and endogenous gene regulation in stably transformed plants. The target of the TFs(ZF) is the Arabidopsis gene APETALA3 (AP3), which encodes a transcription factor that determines floral organ identity. A zinc finger protein (ZFP) was designed to specifically bind to a region upstream of AP3. AP3 transcription was induced by transformation of leaf protoplasts with a transformation vector that expressed a TFZF consisting of the ZFP fused to the tetrameric repeat of herpes simplex VP16's minimal activation domain. Histochemical staining of beta-glucuronidase (GUS) activity in transgenic AP3::GUS reporter plants expressing GUS under control of the AP3 promoter was increased dramatically in petals when the AP3-specific TFZF activator was cointroduced. TFZF-amplified GUS expression signals were also evident in sepal tissues of these double-transgenic plants. Floral phenotype changes indicative of endogenous AP3 factor coactivation were also observed. The same AP3-specific ZFP(AP3) was also fused to a human transcriptional repression domain, the mSIN3 interaction domain, and introduced into either AP3::GUS-expressing plants or wild-type Arabidopsis plants. Dramatic repression of endogenous AP3 expression in floral tissue resulted when a constitutive promoter was used to drive the expression of this TFZF. These plants were also sterile. When a floral tissue-specific promoter from APETALA1 (AP1) gene was used, floral phenotype changes were also observed, but in contrast the plants were fertile. Our results demonstrate that artificial transcriptional factors based on synthetic zinc finger proteins are capable of stable and specific regulation of endogenous genes through multiple generations in multicellular organisms.
引用
收藏
页码:13296 / 13301
页数:6
相关论文
共 50 条
[1]  
AKAGI K, 2001, NUCLEIC ACIDS RES, V29, P1
[2]   ZINC FINGER PROTEIN GENES IN THE MOUSE GENOME [J].
ASHWORTH, A ;
DENNY, P .
MAMMALIAN GENOME, 1991, 1 (03) :196-200
[3]  
BARBAS CF, 2001, Patent No. 0152620
[4]  
Bechtold N, 1998, METH MOL B, V82, P259
[5]   Chemically regulated zinc finger transcription factors [J].
Beerli, RR ;
Schopfer, U ;
Dreier, B ;
Barbas, CF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32617-32627
[6]   Toward controlling gene expression at will:: Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks [J].
Beerli, RR ;
Segal, DJ ;
Dreier, B ;
Barbas, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14628-14633
[7]   Positive and negative regulation of endogenous genes by designed transcription factors [J].
Beerli, RR ;
Dreier, B ;
Barbas, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1495-1500
[8]   Engineering polydactyl zinc-finger transcription factors [J].
Beerli, RR ;
Barbas, CF .
NATURE BIOTECHNOLOGY, 2002, 20 (02) :135-141
[9]  
BERG JM, 1990, ANNU REV BIOPHYS BIO, V19, P405
[10]   Molecular genetics of gynoecium development in Arabidopsis [J].
Bowman, JL ;
Baum, SF ;
Eshed, Y ;
Putterill, J ;
Alvarez, J .
CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY, VOL 45, 1999, 45 :155-205