The Brunn-Minkowski inequality

被引:581
作者
Gardner, RJ [1 ]
机构
[1] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
关键词
Brunn-Minkowski inequality; Minkowski's first inequality; Prekopa-Leindler inequality; Young's inequality; Brascamp-Lieb inequality; Barthe's inequality; isoperimetric inequality; Sobolev inequality; entropy power inequality; covariogram; Anderson's theorem; concave function; concave measure; convex body; mixed volume;
D O I
10.1090/S0273-0979-02-00941-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of R-n, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, and some applications.
引用
收藏
页码:355 / 405
页数:51
相关论文
共 152 条
[1]   A remarkable measure preserving diffeomorphism between two convex bodies in Rn [J].
Alesker, S ;
Dar, S ;
Milman, V .
GEOMETRIAE DEDICATA, 1999, 74 (02) :201-212
[2]  
Anderson T.W., 1955, P AM MATH SOC, V6, P170
[3]   Gauss curvature flow: the fate of the rolling stones [J].
Andrews, B .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :151-161
[4]   Concentration of the distance in finite dimensional normed spaces [J].
Arias-De-Reyna, J ;
Ball, K ;
Villa, R .
MATHEMATIKA, 1998, 45 (90) :245-252
[5]   A Brunn-Minkowski type theorem on the Minkowski spacetime [J].
Bahn, H ;
Ehrlich, P .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (03) :449-469
[6]  
BAIERLEIN R, 1971, ATOMS INFORMATION TH
[7]  
BAKELMAN IJ, 1994, CONVEX ANAL NONLINEA, DOI ARTN MR 95K:35063
[8]   LOGARITHMICALLY CONCAVE FUNCTIONS AND SECTIONS OF CONVEX-SETS IN RN [J].
BALL, K .
STUDIA MATHEMATICA, 1988, 88 (01) :69-84
[9]   SHADOWS OF CONVEX-BODIES [J].
BALL, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (02) :891-901
[10]  
BALL K, 1991, J LOND MATH SOC, V44, P351