Efficient sensitivity analysis of large-scale differential-algebraic systems

被引:149
作者
Feehery, WF [1 ]
Tolsma, JE [1 ]
Barton, PI [1 ]
机构
[1] MIT, DEPT CHEM ENGN, CAMBRIDGE, MA 02139 USA
基金
美国能源部;
关键词
D O I
10.1016/S0168-9274(97)00050-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new algorithm and software for numerical sensitivity analysis of differential-algebraic equations are presented. The staggered corrector method proposed has lower computational complexity than both the staggered direct and the simultaneous corrector methods. The results here are especially significant for, though not limited to, large-scale sparse differential-algebraic systems. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:41 / 54
页数:14
相关论文
共 19 条
[1]  
BARTON PI, 1992, THESIS U LONDON LOND
[2]  
Brenan K.E., 1995, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
[3]   SENSITIVITY ANALYSIS OF INITIAL-VALUE PROBLEMS WITH MIXED ODES AND ALGEBRAIC EQUATIONS [J].
CARACOTSIOS, M ;
STEWART, WE .
COMPUTERS & CHEMICAL ENGINEERING, 1985, 9 (04) :359-365
[4]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[5]  
Duff IS, 1986, DIRECT METHODS SPARS
[6]  
DUFF LS, 1993, RAL93072
[7]  
Feehery WF, 1996, SIAM PROC S, P239
[8]  
Gill M., 1981, Practical Optimization
[9]  
Griewank A., 1989, Mathematical Programming: Recent Developments and Applications, V6, P83
[10]   2ND-ORDER DESIGN SENSITIVITY ANALYSIS OF MECHANICAL SYSTEM DYNAMICS [J].
HAUG, EJ ;
EHLE, PE .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (11) :1699-1717