A particle swarm optimization approach for optimum design of PID controller in AVR system

被引:1118
作者
Gaing, ZL [1 ]
机构
[1] Kao Yuan Inst Technol, Dept Elect Engn, Kaohsiung 821, Taiwan
关键词
AVR system; optimal control; particle swarm optimization; PID controller;
D O I
10.1109/TEC.2003.821821
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a novel design method for determining the optimal proportional-integral-derivative (PID) controller parameters of an AVR system using the particle swarm optimization (PSO) algorithm is presented. This paper demonstrated in detail how to employ the PSO method to search efficiently the optimal PID controller parameters of an AVR system. The proposed approach had superior features, including easy implementation, stable convergence characteristic, and good computational efficiency. Fast tuning of optimum PID controller parameters yields high-quality solution. In order to assist estimating the performance of the proposed PSO-PID controller, a new time-domain performance criterion function was also defined. Compared with the genetic algorithm (GA), the proposed method was indeed more efficient and robust in improving the step response of an AVR system.
引用
收藏
页码:384 / 391
页数:8
相关论文
共 18 条
  • [1] Using selection to improve particle swarm optimization
    Angeline, PJ
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, : 84 - 89
  • [2] CHENG G, 1997, GENETIC ALGORITHMS
  • [3] Fogel D., 2000, EVOLUTIONARY COMPUTA
  • [4] Jones A. H, 1995, P 1 IEE IEEE INT C G, P141
  • [5] A real coded genetic algorithm for matrix inequality design approach of robust PID controller with two degrees of freedom
    Kawabe, T
    Tagami, T
    [J]. PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1997, : 119 - 124
  • [6] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [7] Designing PI/PID controllers for a motion control system based on genetic algorithms
    Krohling, RA
    Jaschek, H
    Rey, JP
    [J]. PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1997, : 125 - 130
  • [8] Design of optimal disturbance rejection PID controllers using genetic algorithms
    Krohling, RA
    Rey, JP
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (01) : 78 - 82
  • [9] Kwok D. P., 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (Cat. No.94TH0650-2), P707, DOI 10.1109/ICEC.1994.349971
  • [10] Mitsukura Y., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P1361, DOI 10.1109/ACC.1999.783590