Curved polymer and polyelectrolyte brushes beyond the Daoud-Cotton model

被引:99
作者
Zhulina, E. B.
Birshtein, T. M.
Borisov, O. V. [1 ]
机构
[1] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
[2] LPCP, UMR 5067, F-64000 Pau, France
关键词
D O I
10.1140/epje/i2006-10013-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We revise the classical Daoud-Cotton (DC) model to describe conformations of polymer and polyelectrolyte chains end-grafted to convex spherical and cylindrical surfaces. In the framework of the DC model, local stretching of chains in the brush does not depend on the degree of polymerization of grafted chains, and the polymer density profile follows a single-exponent power law. This model, however, does not correspond to a minimum in free energy of the curved brush. The nonlocal (NL) approximation exploited in the present paper implies the minimization of the overall free energy of the brush and predicts that the polymer density profile does not follow a single-exponent power law. In the limit of large surface curvature the NL approximation provides the same scaling laws for brush thickness and free energy as the local DC model. Numerical prefactors are however different. Extra extension of chains in the brush interior region leads to larger equilibrium brush thickness and lower free energy per chain. A significant difference between outcomes of the two models is found for brushes formed by ionic polymers, particularly for weakly dissociating (pH-sensitive) polyelectrolytes at low solution salinity.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 38 条
[1]   ADSORPTION OF CHAIN MOLECULES WITH A POLAR HEAD A-SCALING DESCRIPTION [J].
ALEXANDER, S .
JOURNAL DE PHYSIQUE, 1977, 38 (08) :983-987
[2]   SCALING THEORY OF SUPERMOLECULAR STRUCTURES IN BLOCK COPOLYMER SOLVENT SYSTEMS .1. MODEL OF MICELLAR STRUCTURES [J].
BIRSHTEIN, TM ;
ZHULINA, EB .
POLYMER, 1989, 30 (01) :170-177
[3]   CONFORMATIONS OF STAR-BRANCHED MACROMOLECULES [J].
BIRSHTEIN, TM ;
ZHULINA, EB .
POLYMER, 1984, 25 (10) :1453-1461
[4]  
BIRSHTEIN TM, 2000, POLYM SCI, V2, P172
[5]  
Borisov OV, 1996, J PHYS II, V6, P1, DOI 10.1051/jp2:1996164
[6]   Effects of ionic strength and charge annealing in star-branched polyelectrolytes [J].
Borisov, OV ;
Zhulina, EB .
EUROPEAN PHYSICAL JOURNAL B, 1998, 4 (02) :205-217
[7]   SELF-ASSEMBLY OF BLOCK-COPOLYMERS WITH A STRONGLY CHARGED AND A HYDROPHOBIC BLOCK IN A SELECTIVE, POLAR-SOLVENT - MICELLES AND ADSORBED LAYERS [J].
DAN, N ;
TIRRELL, M .
MACROMOLECULES, 1993, 26 (16) :4310-4315
[8]   STAR SHAPED POLYMERS - A MODEL FOR THE CONFORMATION AND ITS CONCENTRATION-DEPENDENCE [J].
DAOUD, M ;
COTTON, JP .
JOURNAL DE PHYSIQUE, 1982, 43 (03) :531-538
[9]  
De Gennes PG., 1979, SCALING CONCEPTS POL
[10]   CONFORMATIONS OF POLYMERS ATTACHED TO AN INTERFACE [J].
DEGENNES, PG .
MACROMOLECULES, 1980, 13 (05) :1069-1075