A time domain characterization of the fine local regularity of functions

被引:35
作者
Kolwankar, KM
Véhel, JL
机构
[1] INRIA Rocquencourt, F-78153 Le Chesnay, France
[2] Irccyn, F-44321 Nantes, France
关键词
c2-microlocal spaces; Holder exponents; fractals; wavelets; numerical estimation;
D O I
10.1007/s00041-002-0016-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define new functional spaces designed to measure the fine local regularity of functions, In contrast with classical approaches based on, e. g., Littlewood-Paley or wavelet analysis, these spaces are characterized by conditions expressed in the lime domain. This is in some cases simpler and more convenient. In particular, because no pre-processing of the data is necessary, it is possible to obtain robust numerical estimation procedures in the case of sampled signals.
引用
收藏
页码:319 / 334
页数:16
相关论文
共 7 条
  • [1] [Anonymous], 1996, MEM AM MATH SOC
  • [2] Beran J, 1994, STAT LONG MEMORY PRO
  • [3] Bony J.-M., 1986, Hyperbolic equations and related topics, P11
  • [4] Construction of continuous functions with prescribed local regularity
    Daoudi, K
    Vehel, JL
    Meyer, Y
    [J]. CONSTRUCTIVE APPROXIMATION, 1998, 14 (03) : 349 - 385
  • [5] GUIHENEUF B, 1998, INT WAV C TANG INR
  • [6] MEYER Y, 1998, CRM, V9
  • [7] SEURET S, 2001, UNPUB TIME DOMAIN CH