p27 small interfering RNA induces cell death through elevating cell cycle activity in cultured cortical neurons: a proof-of-concept study

被引:23
作者
Akashiba, H. [1 ]
Matsuki, N. [1 ]
Nishiyama, N. [1 ]
机构
[1] Univ Tokyo, Chem Pharmacol Lab, Grad Sch Pharmaceut Sci, Bunkyo Ku, Tokyo 1130033, Japan
关键词
small interfering RNA; cell cycle; p27; retinoblastoma protein; cyclin-dependent kinase inhibitors; neuronal death;
D O I
10.1007/s00018-006-6194-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent research has demonstrated that cell cycle-associated molecules are activated in multiple forms of cell death in mature neurons, and raised a hypothesis that unscheduled cell cycle activity leads to neuronal cell death. But there is little evidence that changes in endogenous level of these molecules are causally associated with neuronal cell death. Here we transfected small interfering RNA (siRNA) targeting cyclin-dependent kinase (CDK) inhibitor p27, which plays an important role in cell cycle arrest at G(1)-S phase, into cultured cortical neurons. Transfection of p27 siRNA reduced neuronal viability in a time-dependent manner. p27 siRNA induced phosphorylation of retinoblastoma protein (Rb), a marker of cell cycle progression at late G(1) phase. Moreover, phosphorylation of Rb and neuronal cell death provoked by p27 siRNA were abrogated by pharmacological CDK inhibitors, olomoucine and purvalanol A. Our data demonstrate that a decrease in endogenous p27 induces neuronal cell death through elevating cell cycle activity.
引用
收藏
页码:2397 / 2404
页数:8
相关论文
共 36 条
[1]   Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT [J].
Abe, K ;
Matsuki, N .
NEUROSCIENCE RESEARCH, 2000, 38 (04) :325-329
[2]   Cell cycle regulation of neuronal apoptosis in development and disease [J].
Becker, EBE ;
Bonni, A .
PROGRESS IN NEUROBIOLOGY, 2004, 72 (01) :1-25
[3]   p27Kip1 modulates cell migration through the regulation of RhoA activation [J].
Besson, A ;
Gurian-West, M ;
Schmidt, A ;
Hall, A ;
Roberts, JM .
GENES & DEVELOPMENT, 2004, 18 (08) :862-876
[4]  
Campbell TN, 2005, CURR ISSUES MOL BIOL, V7, P1
[5]   Mitotic signaling by β-amyloid causes neuronal death [J].
Copani, A ;
Condorelli, F ;
Caruso, A ;
Vancheri, C ;
Sala, A ;
Stella, AMG ;
Canonico, PL ;
Nicoletti, F ;
Sortino, MA .
FASEB JOURNAL, 1999, 13 (15) :2225-2234
[6]   New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? [J].
Coqueret, O .
TRENDS IN CELL BIOLOGY, 2003, 13 (02) :65-70
[7]   Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications [J].
Dalby, B ;
Cates, S ;
Harris, A ;
Ohki, EC ;
Tilkins, ML ;
Price, PJ ;
Ciccarone, VC .
METHODS, 2004, 33 (02) :95-103
[8]   Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation [J].
Davidson, TJ ;
Harel, S ;
Arboleda, VA ;
Prunell, GF ;
Shelanski, ML ;
Greene, LA ;
Troy, CM .
JOURNAL OF NEUROSCIENCE, 2004, 24 (45) :10040-10046
[9]   Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury [J].
Di Giovanni, S ;
Movsesyan, V ;
Ahmed, F ;
Cernak, L ;
Schinelli, S ;
Stoica, B ;
Faden, AI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (23) :8333-8338
[10]   Analysis of gene function in somatic mammalian cells using small interfering RNAs [J].
Elbashir, SM ;
Harborth, J ;
Weber, K ;
Tuschl, T .
METHODS, 2002, 26 (02) :199-213