Spectral Network (SpecNet) - What is it and why do we need it?

被引:123
作者
Gamon, J. A.
Rahman, A. F.
Dungan, J. L.
Schildhauer, M.
Huemmrich, K. F.
机构
[1] Calif State Univ Los Angeles, Dept Biol Sci, Los Angeles, CA 90032 USA
[2] Texas Tech Univ, MS2125, Lubbock, TX 79409 USA
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA
[5] Univ Maryland Baltimore Cty, NASA, GSFC, Joint Ctr Earth Syst Technol, Greenbelt, MD 20771 USA
基金
美国国家科学基金会;
关键词
SpecNet (Spectral Network); optical remote sensing; surface-atmosphere flux; scaling; satellite validation; FLUXNET;
D O I
10.1016/j.rse.2006.04.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effective integration of optical remote sensing with flux measurements across multiple scales is essential for understanding global patterns of surface-atmosphere fluxes of carbon and water vapor. SpecNet (Spectral Network) is an international network of cooperating investigators and sites linking optical measurements with flux sampling for the purpose of improving our understanding of the controls on these fluxes. An additional goal is to characterize disturbance impacts on surface-atmosphere fluxes. To reach these goals, key SpecNet objectives include the exploration of scaling issues, development of novel sampling tools, standardization and intercomparison of sampling methods, development of models and statistical methods that relate optical sampling to fluxes, exploration of component fluxes, validation of satellite products, and development of an informatics approach that integrates disparate data sources across scales. Examples of these themes are summarized in this review. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 48 条
[1]  
[Anonymous], 1997, J GEOPHYS RES ATMOS
[2]   Variability in leaf and litter optical properties: Implications for BRDF model inversions using AVHRR, MODIS, and MISR [J].
Asner, GP ;
Wessman, CA ;
Schimel, DS ;
Archer, S .
REMOTE SENSING OF ENVIRONMENT, 1998, 63 (03) :243-257
[3]   Comparison of spectral indices obtained using multiple spectroradiometers [J].
Castro-Esau, K. L. ;
Sanchez-Azofeifa, G. A. ;
Rivard, B. .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (03) :276-288
[4]   Spectral mixture analyses of hyperspectral data acquired using a tethered balloon [J].
Chen, Xuexia ;
Vierling, Lee .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (03) :338-350
[5]   A multi-scale analysis of dynamic optical signals in a Southern California chaparral ecosystem: A comparison of field, AVIRIS and MODIS data [J].
Cheng, Yufu ;
Gamon, John A. ;
Fuentes, David A. ;
Mao, Zhiyan ;
Sims, Daniel A. ;
Qiu, Hong-lie ;
Claudio, Helen ;
Huete, Alfredo ;
Rahman, Abdullah F. .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (03) :369-378
[6]   Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index [J].
Claudio, Helen C. ;
Cheng, Yufu ;
Fuentes, David A. ;
Gamon, John A. ;
Luo, Hongyan ;
Oechel, Walter ;
Qiu, Hong-Lie ;
Rahman, Abdullah F. ;
Sims, Daniel A. .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (03) :304-311
[7]   A NEW TECHNIQUE TO MEASURE THE SPECTRAL PROPERTIES OF CONIFER NEEDLES [J].
DAUGHTRY, CST ;
RANSON, KJ ;
BIEHL, LL .
REMOTE SENSING OF ENVIRONMENT, 1989, 27 (01) :81-91
[8]   LIBERTY - Modeling the effects of leaf biochemical concentration on reflectance spectra [J].
Dawson, TP ;
Curran, PJ ;
Plummer, SE .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (01) :50-60
[9]  
ESTRIN D, 2003, NAT SCI FDN SPONS WO
[10]   Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought [J].
Filella, I ;
Peñuelas, J ;
Llorens, L ;
Estiarte, M .
REMOTE SENSING OF ENVIRONMENT, 2004, 90 (03) :308-318