Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures

被引:87
作者
Guan, Y [1 ]
Nothnagel, EA [1 ]
机构
[1] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
关键词
D O I
10.1104/pp.104.039370
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabinogalactan-proteins (AGPs) are cell wall proteoglycans and are widely distributed in the plant kingdom. Classical AGPs and some nonclassical AGPs are predicted to have a glycosylphosphatidylinositol lipid anchor and have been suggested to be involved in cell-cell signaling. Yariv phenylglycoside is a synthetic probe that specifically binds to plant AGPs and has been used to study AGP functions. We treated Arabidopsis suspension cell cultures with Yariv phenylglycoside and observed decreased cell viability, increased cell wall apposition and cytoplasmic vesiculation, and induction of callose deposition. The induction of cell wall apposition and callose synthesis led us to hypothesize that Yariv binding of plant surface AGPs triggers wound-like responses. To study the effect of Yariv binding to plant surface AGPs and to further understand AGP functions, an Arabidopsis whole genome array was used to monitor the transcriptional modifications after Yariv treatment. By comparing the genes that are induced by Yariv treatment with genes whose expressions have been previously shown to be induced by other conditions, we conclude that the gene expression profile induced by Yariv phenylglycoside treatment is most similar to that of wound induction. It remains uncertain whether the Yariv phenylglycoside cross-linking of cell surface AGPs induces these genes through a specific AGP-based signaling mechanism or through a general mechanical perturbation of the cell surface.
引用
收藏
页码:1346 / 1366
页数:21
相关论文
共 99 条
[1]   PAPILLAE AND RELATED WOUND PLUGS OF PLANT-CELLS [J].
AIST, JR .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1976, 14 :145-163
[2]   Cellular localization of Arabidopsis xyloglucan endotransglycosylase-related proteins during development and after wind stimulation [J].
Antosiewicz, DM ;
Purugganan, MM ;
Polisensky, DH ;
Braam, J .
PLANT PHYSIOLOGY, 1997, 115 (04) :1319-1328
[3]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[4]   CLONING AND CHARACTERIZATION OF TAG-1, A TOBACCO ANTHER BETA-1,3-GLUCANASE EXPRESSED DURING TETRAD DISSOLUTION [J].
BUCCIAGLIA, PA ;
SMITH, AG .
PLANT MOLECULAR BIOLOGY, 1994, 24 (06) :903-914
[5]   Characterization of a tissue-specific and developmentally regulated β-1,3-glucanase gene in pea (Pisum sativum) [J].
Buchner, P ;
Rochat, C ;
Wuillème, S ;
Boutin, JP .
PLANT MOLECULAR BIOLOGY, 2002, 49 (02) :171-186
[6]   Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence [J].
Callard, D ;
Axelos, M ;
Mazzolini, L .
PLANT PHYSIOLOGY, 1996, 112 (02) :705-715
[7]   Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions [J].
Campbell, P ;
Braam, J .
TRENDS IN PLANT SCIENCE, 1999, 4 (09) :361-366
[8]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[9]   NDR1, a pathogen-induced component required for Arabidopsis disease resistance [J].
Century, KS ;
Shapiro, AD ;
Repetti, PP ;
Dahlbeck, D ;
Holub, E ;
Staskawicz, BJ .
SCIENCE, 1997, 278 (5345) :1963-1965
[10]   Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J].
Cheong, YH ;
Chang, HS ;
Gupta, R ;
Wang, X ;
Zhu, T ;
Luan, S .
PLANT PHYSIOLOGY, 2002, 129 (02) :661-677