Fluid flow inhibits endothelial adhesiveness - Nitric oxide and transcriptional regulation of VCAM-1

被引:243
作者
Tsao, PS [1 ]
Buitrago, R [1 ]
Chan, JR [1 ]
Cooke, JP [1 ]
机构
[1] FALK CARDIOVASC RES CTR, STANFORD, CA 94305 USA
关键词
blood flow; endothelium-derived factors; adhesion molecules; atherosclerosis; free radicals;
D O I
10.1161/01.CIR.94.7.1682
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background In the arterial tree, regions exposed to reduced shear stress (low and/or disturbed flow) are predisposed to atherogenesis. Fluid flow is a potent stimulus for the release of endothelium-derived nitric oxide (NO). Because NO inhibits monocyte-endothelial cell interaction, we speculated that the effects of Bow in inhibiting atherogenesis might be mediated in part by NO. Methods and Results Confluent monolayers of human aortic endothelial cells were exposed to static or fluid Bow conditions for 4 hours. The medium was replaced, and cells were then incubated with native LDL (50 mu g/mL), oxidized LDL (30 mu g/mL), or lipopolysaccharide (LPS) (10 ng/mL) + tumor necrosis factor-alpha (TNF-alpha) (10 U/mL) for an additional 4 hours. Functional. binding assays using THP-1 monocytes were then performed. Superoxide production by human aortic endothelial cells was monitored by lucigenin chemiluminescence, and expression of the adhesion molecules vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 were quantified by flow cytometry. Whereas native LDL had little effect, incubation with either oxidized LDL or LPS/TNF-alpha significantly increased superoxide production, nuclear factor-kappa B activity, VCAM-1 expression, and endothelial adhesiveness for monocytes. Previous exposure to fluid flow inhibited these sequelae of exposure to cytokines or oxidized lipoprotein. The effect of fluid flow appears to be due in part to shear-induced release of NO, because coincubation with nitro-L-arginine completely abolished these effects of flow. Furthermore, the NO donor PAPA-NONO-ate and 8-Br-cGMP (but not 8-Br-cAMP) mimicked the effects of flow. Conclusions Previous exposure to fluid Bow decreased cytokine- or lipoprotein-stimulated endothelial cell superoxide production, VCAM-1 expression, and monocyte binding; the effects of Bow appear to be due to NO. Flow-mediated NO-dependent regulation of oxidant-responsive transcription may influence the site of a lesion.
引用
收藏
页码:1682 / 1689
页数:8
相关论文
共 56 条
[1]   FLOW PATTERNS AND SPATIAL-DISTRIBUTION OF ATHEROSCLEROTIC LESIONS IN HUMAN CORONARY-ARTERIES [J].
ASAKURA, T ;
KARINO, T .
CIRCULATION RESEARCH, 1990, 66 (04) :1045-1066
[2]   NITRIC-OXIDE AND PROSTACYCLIN - DIVERGENCE OF INHIBITORY EFFECTS ON MONOCYTE CHEMOTAXIS AND ADHESION TO ENDOTHELIUM INVITRO [J].
BATH, PMW ;
HASSALL, DG ;
GLADWIN, AM ;
PALMER, RMJ ;
MARTIN, JF .
ARTERIOSCLEROSIS AND THROMBOSIS, 1991, 11 (02) :254-260
[3]   PATHOLOGICAL IMPLICATIONS OF NITRIC-OXIDE, SUPEROXIDE AND PEROXYNITRITE FORMATION [J].
BECKMAN, JS ;
CROW, JP .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1993, 21 (02) :330-334
[4]   ATHEROSCLEROSIS - BASIC MECHANISMS - OXIDATION, INFLAMMATION, AND GENETICS [J].
BERLINER, JA ;
NAVAB, M ;
FOGELMAN, AM ;
FRANK, JS ;
DEMER, LL ;
EDWARDS, PA ;
WATSON, AD ;
LUSIS, AJ .
CIRCULATION, 1995, 91 (09) :2488-2496
[5]   APPARATUS FOR SUBJECTING LIVING CELLS TO FLUID SHEAR-STRESS [J].
BUSSOLARI, SR ;
DEWEY, CF ;
GIMBRONE, MA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1982, 53 (12) :1851-1854
[6]  
CAYETTE AJ, 1994, ARTERIOSCLER THROMB, V14, P753
[7]   NITRIC-OXIDE, AN ENDOTHELIAL-CELL RELAXATION FACTOR, INHIBITS NEUTROPHIL SUPEROXIDE ANION PRODUCTION VIA A DIRECT ACTION ON THE NADPH OXIDASE [J].
CLANCY, RM ;
LESZCZYNSKAPIZIAK, J ;
ABRAMSON, SB .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 90 (03) :1116-1121
[8]   FLOW ACTIVATES AN ENDOTHELIAL POTASSIUM CHANNEL TO RELEASE AN ENDOGENOUS NITROVASODILATOR [J].
COOKE, JP ;
ROSSITCH, E ;
ANDON, NA ;
LOSCALZO, J ;
DZAU, VJ .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 88 (05) :1663-1671
[9]   ANTIATHEROGENIC EFFECTS OF L-ARGININE IN THE HYPERCHOLESTEROLEMIC RABBIT [J].
COOKE, JP ;
SINGER, AH ;
TSAO, P ;
ZERA, P ;
ROWAN, RA ;
BILLINGHAM, ME .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 90 (03) :1168-1172
[10]   FLOW STIMULATES ENDOTHELIAL-CELLS TO RELEASE A NITROVASODILATOR THAT IS POTENTIATED BY REDUCED THIOL [J].
COOKE, JP ;
STAMLER, J ;
ANDON, N ;
DAVIES, PF ;
MCKINLEY, G ;
LOSCALZO, J .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 259 (03) :H804-H812