Array of hope: expression profiling identifies disease biomarkers and mechanism

被引:22
作者
Bhattacharya, Soumyaroop
Mariani, Thomas J. [1 ]
机构
[1] Univ Rochester, Div Neonatol, Rochester, NY 14642 USA
关键词
biomarker; chronic obstructive pulmonary disease (COPD); disease mechanism; expression profiling; lung; microarray; OBSTRUCTIVE PULMONARY-DISEASE; LYMPH-NODE METASTASIS; GENE-EXPRESSION; MICROARRAY DATA; LUNG-CANCER; BREAST-CANCER; CELL CARCINOMA; MESSENGER-RNA; SERPINE2; GENE; ASTHMA;
D O I
10.1042/BST0370855
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput, genome-wide analytical technologies are now commonly used in all fields of medical research. The most commonly applied of these technologies, gene expression microarrays, have been shown to be both accurate and precise when properly implemented. For over a decade, microarrays have provided novel insight into many complex human diseases. Microarray-based discovery can be classified into three components, biomarker detection, disease (sub)classification and identification of causal mechanism, in order of accomplishment. Within the respiratory system, the application of microarrays has achieved significant success in all components, particularly with respect to lung cancer. Numerous studies over the last half-decade have applied this technology to the characterization of non-malignant respiratory diseases, animal models of respiratory disease and normal developmental processes. Studies of obstructive lung diseases by many groups, including our own, have yielded not only disease biomarkers, but also some novel putative pathogenic mechanisms. We have successfully used an integrative genomics approach, combining microarray analysis with human genetics, to identify susceptibility genes for COPD (chronic obstructive pulmonary disease). Interestingly, we find that the assessment of quantitative phenotypic variables enhances gene discovery. our studies contribute to the identification of obstructive lung disease biomarkers, provide data associated with disease phenotypes and support the use of an integrated approach to move beyond marker identification to mechanism discovery.
引用
收藏
页码:855 / 862
页数:8
相关论文
共 58 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[3]   Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J].
Bhattacharjee, A ;
Richards, WG ;
Staunton, J ;
Li, C ;
Monti, S ;
Vasa, P ;
Ladd, C ;
Beheshti, J ;
Bueno, R ;
Gillette, M ;
Loda, M ;
Weber, G ;
Mark, EJ ;
Lander, ES ;
Wong, W ;
Johnson, BE ;
Golub, TR ;
Sugarbaker, DJ ;
Meyerson, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13790-13795
[4]   Transformation of expression intensities across generations of affymetrix microarrays using sequence matching and regression modeling [J].
Bhattacharya, S ;
Mariani, TJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (18) :1-10
[5]  
Bhattacharya Soumyaroop, 2006, Proc Am Thorac Soc, V3, P472, DOI 10.1513/pats.200603-033MS
[6]   Molecular Biomarkers for Quantitative and Discrete COPD Phenotypes [J].
Bhattacharya, Soumyaroop ;
Srisuma, Sorachai ;
DeMeo, Dawn L. ;
Shapiro, Steven D. ;
Bueno, Raphael ;
Silverman, Edwin K. ;
Reilly, John J. ;
Mariani, Thomas J. .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2009, 40 (03) :359-367
[7]  
Bhattacharya Soumyaroop, 2003, Appl Bioinformatics, V2, P197
[8]   Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes [J].
Blackshaw, S ;
Fraioli, RE ;
Furukawa, T ;
Cepko, CL .
CELL, 2001, 107 (05) :579-589
[9]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[10]   Ratio statistics of gene expression levels and applications to microarray data analysis [J].
Chen, YD ;
Kamat, V ;
Dougherty, ER ;
Bittner, ML ;
Meltzer, PS ;
Trent, JM .
BIOINFORMATICS, 2002, 18 (09) :1207-1215