A SERS-active system based on silver nanoparticles tethered to a deposited silver film

被引:105
作者
Anderson, D. J.
Moskovits, M. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[2] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
关键词
D O I
10.1021/jp055243y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of SERS-active nanostructures were produced by exposing a freshly deposited silver film ( fabricated to be as free from roughness as practicable) to a solution containing a mixture of 1-decanethiol (m) and 1,9-nonanedithiol (d) of varying concentrations of m to d, then allowing colloidal silver nanoparticles to interact with the surface. Silver nanoparticles were found to bind exclusively to films which were prepared from solutions with a nonzero concentration of the dithiol implying that the nanoparticles were tethered to the silver surface by the dithiol with one of the thiolate groups bound to the nanoparticle and the other to the silver film. Intense SERS spectra were observed even from samples in which the m/d concentration ratio was so large that the adsorbed molecules in the vicinity of only similar to 8 +/- 3 nanoparticles were illuminated by the diffraction-limited focused laser beam. At such high dilution, the molecules (numbering at most similar to 330) residing in the SERS "hot spots" associated with the similar to 8 nanoparticles consisted primarily of m (although, of course, for each nanoparticle, at least one molecule in the hot spot had to be d to serve as the linker). This was corroborated by the SERS spectra. An analysis is presented, which accounts for the fact that as the concentration ratio of m/d increases, the SERS intensity associated with bands belonging to m first increases to a maximum then decreases. The nanoparticle-metal film system presented here is a simple embodiment of a more general range of SERS-active sensing platforms in which a molecular tether is used to create a SERS hot spot that (although nanosized) is large enough to accommodate analyte molecules that cannot themselves function as linkers, which are subsequently detected by SERS at the few-molecule level.
引用
收藏
页码:13722 / 13727
页数:6
相关论文
共 55 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]   THE EFFECTS OF THE INTERACTION BETWEEN RESONANCES IN THE ELECTROMAGNETIC RESPONSE OF A SPHERE-PLANE STRUCTURE - APPLICATIONS TO SURFACE ENHANCED SPECTROSCOPY [J].
ARAVIND, PK ;
METIU, H .
SURFACE SCIENCE, 1983, 124 (2-3) :506-528
[3]   THE INTERACTION BETWEEN ELECTROMAGNETIC RESONANCES AND ITS ROLE IN SPECTROSCOPIC STUDIES OF MOLECULES ADSORBED ON COLLOIDAL PARTICLES OR METAL SPHERES [J].
ARAVIND, PK ;
NITZAN, A ;
METIU, H .
SURFACE SCIENCE, 1981, 110 (01) :189-204
[4]   Raman characterization of metal-alkanethiolates [J].
Bensebaa, F ;
Zhou, Y ;
Brolo, AG ;
Irish, DE ;
Deslandes, Y ;
Kruus, E ;
Ellis, TH .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1999, 55 (06) :1229-1236
[5]   Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horseradish peroxidase [J].
Bjerneld, EJ ;
Földes-Papp, Z ;
Käll, M ;
Rigler, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (06) :1213-1218
[6]   Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates [J].
Bosnick, KA ;
Jiang, J ;
Brus, LE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (33) :8096-8099
[7]   Origin of the D line in the Raman spectrum of graphite:: A study based on Raman frequencies and intensities of polycyclic aromatic hydrocarbon molecules [J].
Castiglioni, C ;
Mapelli, C ;
Negri, F ;
Zerbi, G .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (02) :963-974
[8]   Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement [J].
Doering, WE ;
Nie, SM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (02) :311-317
[9]  
Drachev VP, 2002, TOP APPL PHYS, V82, P113
[10]   Direct observation of size-dependent optical enhancement in single metal nanoparticles [J].
Emory, SR ;
Haskins, WE ;
Nie, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (31) :8009-8010