Neu differentiation factor (NDF; also known as neuregulin) induces a pleiotropic cellular response that is cell type-dependent. NDF and its receptor ErbB-4 are highly expressed in neurons, implying important roles in neuronal cell functions, In the present study we demonstrate that ErbB-4 receptors expressed in PC12 cells mediate NDF-induced signals and neurite outgrowth that are indistinguishable from those mediated by the nerve growth factor-activated Trk receptors. In PC12-ErbB-4 cells but not in PC12 cells, NDF induced an initial weak mitogenic signal and subsequently neurite outgrowth. The NDF-induced differentiation in PC12-ErbB-4 cells was mimicked by the pan-ErbB ligand betacellulin but not by other epidermal growth factor-like ligands. Thus, NDF and betacellulin mediate similar activities through the ErbB-4 receptor. Indeed, only these ligands induced strong phosphorylation of the ErbB-4 receptors, Neurite outgrowth induced by NDF in PC12-ErbB-4 cells was accompanied by sustained activation of mitogen-activated protein kinase (MAPK) and induction of the neural differentiation marker GAP-43, Inhibition of the MAPK kinase MEK or of protein kinase C (PKC) blocked NDF-induced differentiation, whereas elevation of cyclic AMP levels enhanced the response. Taken together, these results indicate that neurite outgrowth induced by ErbB-4 in PC12 cells requires MAPK and PKC signaling networks.