Specific orientation and two-dimensional crystallization of the proteasome at metal-chelating lipid interfaces

被引:43
作者
Thess, A
Hutschenreiter, S
Hofmann, M
Tampé, R
Baumeister, W
Guckenberger, R
机构
[1] Max Planck Inst Biochem, Abt Mol Strukturbiol, D-82152 Martinsried, Germany
[2] Univ Frankfurt, Biozentrum, Inst Biochem, D-60439 Frankfurt, Germany
关键词
D O I
10.1074/jbc.M202145200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The potential of a protein-engineered His tag to immobilize macromolecules in a predictable orientation at metal-chelating lipid interfaces was investigated using recombinant 20 S proteasomes His-tagged in various positions. Electron micrographs demonstrated that the orientation of proteasomes bound to chelating lipid films could be controlled via the location of their His tags: proteasomes His-tagged at their sides displayed exclusively side-on views, while proteasomes His-tagged at their ends displayed exclusively end-on views. The activity of proteasomes immobilized at chelating lipid interfaces was well preserved. In solution, His-tagged proteasomes hydrolyzed casein at rates comparable with wild-type proteasomes, unless the His tags were located in the vicinity of the N termini of alpha-subunits. The N termini of a-subunits might partly occlude the entrance channel in a-rings through which substrates enter the proteasome for subsequent degradation. A combination of electron micrographs and atomic force microscope topographs revealed a propensity of vertically oriented proteasomes to crystallize in two dimensions on fluid lipid films. The oriented immobilization of His-tagged proteins at biocompatible lipid interfaces will assist structural studies as well as the investigation of biomolecular interaction via a wide variety of surface-sensitive techniques including single-molecule analysis.
引用
收藏
页码:36321 / 36328
页数:8
相关论文
共 50 条
[1]   Structural analysis of membrane-bound retrovirus capsid proteins [J].
Barklis, E ;
McDermott, J ;
Wilkens, S ;
Schabtach, E ;
Schmid, MF ;
Fuller, S ;
Karanjia, S ;
Love, Z ;
Jones, R ;
Rui, YJ ;
Zhao, XM ;
Thompson, D .
EMBO JOURNAL, 1997, 16 (06) :1199-1213
[2]   The proteasome:: Paradigm of a self-compartmentalizing protease [J].
Baumeister, W ;
Walz, J ;
Zühl, F ;
Seemuller, E .
CELL, 1998, 92 (03) :367-380
[3]   Specific interaction and two-dimensional crystallization of histidine tagged yeast RNA polymerase I on nickel-chelating lipids [J].
Bischler, N ;
Balavoine, F ;
Milkereit, P ;
Tschochner, H ;
Mioskowski, C ;
Schultz, P .
BIOPHYSICAL JOURNAL, 1998, 74 (03) :1522-1532
[4]   INTERACTION BETWEEN BIOTIN LIPIDS AND STREPTAVIDIN IN MONOLAYERS - FORMATION OF ORIENTED TWO-DIMENSIONAL PROTEIN DOMAINS INDUCED BY SURFACE RECOGNITION [J].
BLANKENBURG, R ;
MELLER, P ;
RINGSDORF, H ;
SALESSE, C .
BIOCHEMISTRY, 1989, 28 (20) :8214-8221
[5]   DETERMINATION OF THE ORIENTATION DISTRIBUTION OF ADSORBED FLUOROPHORES USING TIRF .1. THEORY [J].
BOS, MA ;
KLEIJN, JM .
BIOPHYSICAL JOURNAL, 1995, 68 (06) :2566-2572
[6]   DETERMINATION OF THE ORIENTATION DISTRIBUTION OF ADSORBED FLUOROPHORES USING TIRF .2. MEASUREMENTS ON PORPHYRIN AND CYTOCHROME-C [J].
BOS, MA ;
KLEIJN, JM .
BIOPHYSICAL JOURNAL, 1995, 68 (06) :2573-2579
[7]   IMAGING THE MEMBRANE-PROTEIN BACTERIORHODOPSIN WITH THE ATOMIC FORCE MICROSCOPE [J].
BUTT, HJ ;
DOWNING, KH ;
HANSMA, PK .
BIOPHYSICAL JOURNAL, 1990, 58 (06) :1473-1480
[8]   Structure and function of a membrane-bound murine MHC class I molecule [J].
Celia, H ;
Wilson-Kubalek, E ;
Milligan, RA ;
Teyton, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (10) :5634-5639
[9]   Structure and functions of the 20S and 26S proteasomes [J].
Coux, O ;
Tanaka, K ;
Goldberg, AL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :801-847
[10]   THE MULTICATALYTIC PROTEINASE (PROSOME) IS UBIQUITOUS FROM EUKARYOTES TO ARCHAEBACTERIA [J].
DAHLMANN, B ;
KOPP, F ;
KUEHN, L ;
NIEDEL, B ;
PFEIFER, G ;
HEGERL, R ;
BAUMEISTER, W .
FEBS LETTERS, 1989, 251 (1-2) :125-131