New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result

被引:91
作者
Bruneau, CH
Fabrie, P
机构
[1] Mathematiques Appl. de Bordeaux, Université Bordeaux 1
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1996年 / 30卷 / 07期
关键词
D O I
10.1051/m2an/1996300708151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Efficient natural conditions on open boundaries for incompressible flows are derived from a weak formulation of Navier-Stokes equations. Energy estimates in velocity-pressure are established from a mixed formulation and a rigourous proof of existence of solutions is given. As an illustration, the conditions are written down for the flow behind an obstacle in a channel. Moreover, numerical tests have shown the accuracy and robustness of such conditions.
引用
收藏
页码:815 / 840
页数:26
相关论文
共 14 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
BEGUE C, 1987, CR ACAD SCI I-MATH, V304, P23
[3]   EFFECTIVE DOWNSTREAM BOUNDARY-CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BRUNEAU, CH ;
FABRIE, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 19 (08) :693-705
[4]   MIXED-FINITE ELEMENT APPROXIMATION OF STOKES TYPE PROBLEMS [J].
CONCA, C .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :75-91
[5]  
DUVAUD G, 1972, INEQUATIONS MECANIQU
[6]  
Girault V., 1986, SPRINGER SERIES COMP
[7]   INCOMPRESSIBLE FLUID-DYNAMICS - SOME FUNDAMENTAL FORMULATION ISSUES [J].
GRESHO, PM .
ANNUAL REVIEW OF FLUID MECHANICS, 1991, 23 :413-453
[8]  
HALPERN L, 1986, MATH COMPUT, V46, P425, DOI 10.1090/S0025-5718-1986-0829617-8
[9]   ARTIFICIAL BOUNDARY-CONDITIONS FOR INCOMPRESSIBLE VISCOUS FLOWS [J].
HALPERN, L ;
SCHATZMAN, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :308-353
[10]  
LIONS JL, 1979, QUELQUES METHODES RE