A truncated log barrier algorithm for large-scale convex programming and minmax problems: Implementation and computational results

被引:3
作者
BenTal, A [1 ]
Roth, G [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL, FAC IND ENGN & MANAGEMENT, IL-32000 HAIFA, ISRAEL
关键词
interior point methods; convex programming;
D O I
10.1080/10556789608805639
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A detailed description of a path-following Interior point algorithm for constrained convex programs is presented. The algorithm employs a truncated logarithmic barrier function, which is particularly suitable to problems with many nonactive constraints. A special version of the algorithm is adopted to minmax problems. Extensive testing of the algorithms on large-scale Structural Optimization problems (truss topology design, shape design with optimized material) demonstrate their efficiency.
引用
收藏
页码:283 / 312
页数:30
相关论文
共 22 条
[1]  
Achtziger W., 1992, Impact of Computing in Science and Engineering, V4, P315, DOI 10.1016/0899-8248(92)90005-S
[2]  
Bathe K. J., 1976, NUMERICAL METHODS FI
[3]   A NEW METHOD FOR OPTIMAL TRUSS TOPOLOGY DESIGN [J].
Ben-Tal, Aharon ;
Bendsoe, Martin P. .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (02) :322-358
[4]  
Bendsoe M., 1995, METHODS OPTIMIZATION
[5]   OPTIMIZATION METHODS FOR TRUSS GEOMETRY AND TOPOLOGY DESIGN [J].
BENDSOE, MP ;
BENTAL, A ;
ZOWE, J .
STRUCTURAL OPTIMIZATION, 1994, 7 (03) :141-159
[6]   AN ANALYTICAL MODEL TO PREDICT OPTIMAL MATERIAL PROPERTIES IN THE CONTEXT OF OPTIMAL STRUCTURAL DESIGN [J].
BENDSOE, MP ;
GUEDES, JM ;
HABER, RB ;
PEDERSEN, P ;
TAYLOR, JE .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1994, 61 (04) :930-937
[7]  
BENISRAEL A, 1981, OPTIMALITY NONLINEAR
[8]  
BENTAL A, 1993, IN PRESS SIAM J OPTI
[9]  
BENTAL A, 1992, IN PRESS SIAM OPTIMI
[10]  
BREITFELD MG, 1993, COMPUTATIONAL EXPERI