Local estimates for entropy densities in coupled map lattices

被引:9
作者
Olbrich, E [1 ]
Hegger, R [1 ]
Kantz, H [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.84.2132
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a method to derive an upper bound for the entropy density of coupled map lattices with local interactions from local observations. To do this, we use an embedding technique that is a combination of time delay and spatial embedding. This embedding allows us to identify the local character of the equations of motion. Based on this method we present an approximate estimate of the entropy density by the correlation integral.
引用
收藏
页码:2132 / 2135
页数:4
相关论文
共 15 条
  • [1] Abarbanel H, 1996, ANAL OBSERVED CHAOTI
  • [2] CHARACTERIZATION OF SPATIOTEMPORAL CHAOS FROM TIME-SERIES
    BAUER, M
    HENG, H
    MARTIENSSEN, W
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (04) : 521 - 524
  • [3] Estimation of Lyapunov spectra from space-time data
    Bünner, MJ
    Hegger, R
    [J]. PHYSICS LETTERS A, 1999, 258 (01) : 25 - 30
  • [4] Cover TM., 1991, WILEY SERIES TELECOM, P63
  • [5] NOISE, CHAOS, AND (EPSILON, TAU)-ENTROPY PER UNIT TIME
    GASPARD, P
    WANG, XJ
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 235 (06): : 291 - 343
  • [6] INFORMATION-CONTENT AND PREDICTABILITY OF LUMPED AND DISTRIBUTED DYNAMICAL-SYSTEMS
    GRASSBERGER, P
    [J]. PHYSICA SCRIPTA, 1989, 40 (03): : 346 - 353
  • [7] ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICAL REVIEW A, 1983, 28 (04): : 2591 - 2593
  • [8] DIMENSIONS AND ENTROPIES OF STRANGE ATTRACTORS FROM A FLUCTUATING DYNAMICS APPROACH
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICA D, 1984, 13 (1-2): : 34 - 54
  • [9] Kantz H, 1997, Nonlinear Time Series Analysis
  • [10] KORZINOV LN, 1992, NATO ASI B, V280