An algorithmic benchmark for quantum information processing

被引:229
作者
Knill, E
Laflamme, R
Martinez, R
Tseng, CH
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1038/35006012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum information processing offers potentially great advantages over classical information processing, both for efficient algorithms(1,2) and for secure communication(3,4). Therefore, it is important to establish that scalable control of a large number of quantum bits (qubits) can be achieved in practice. There are a rapidly growing number of proposed device technologies(5-11) for quantum information processing. Of these technologies, those exploiting nuclear magnetic resonance (NMR) have been the first to demonstrate non-trivial quantum algorithms with small numbers of qubits(12-16). To compare different physical realizations of quantum information processors, it is necessary to establish benchmark experiments that are independent of the underlying physical system, and that demonstrate reliable and coherent control of a reasonable number of qubits. Here we report an experimental realization of an algorithmic benchmark using an NMR technique that involves coherent manipulation of seven qubits. Moreover, our experimental procedure can be used as a reliable and efficient method for creating a standard pseudopure state, the first step for implementing traditional quantum algorithms in liquid state NMR systems. The benchmark and the techniques can be adapted for use with other proposed quantum devices.
引用
收藏
页码:368 / 370
页数:3
相关论文
共 30 条
[1]  
AHARONOV D, 1996, P 29 ANN ACM S THEOR, P176
[2]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[3]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[4]   Prospects for quantum coherent computation using superconducting electronics [J].
Bocko, MF ;
Herr, AM ;
Feldman, MJ .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) :3638-3641
[5]   Experimental realization of a quantum algorithm [J].
Chuang, IL ;
Vandersypen, LMK ;
Zhou, XL ;
Leung, DW ;
Lloyd, S .
NATURE, 1998, 393 (6681) :143-146
[6]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[7]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155
[8]   Ensemble quantum computing by NMR spectroscopy [J].
Cory, DG ;
Fahmy, AF ;
Havel, TF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1634-1639
[9]  
Dür W, 1999, PHYS REV A, V59, P169, DOI 10.1103/PhysRevA.59.169
[10]  
EMSLEY L, 1994, P INT SCH PHYS, V123, P123