Hybrid fuzzy convolution modelling and identification of chemical process systems

被引:7
作者
Abonyi, J [1 ]
Nagy, L [1 ]
Szeifert, F [1 ]
机构
[1] Univ Veszprem, Dept Chem Engn Cybernet, H-8201 Veszprem, Hungary
关键词
D O I
10.1080/002077200291046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper looks at a new method of modelling nonlinear dynamic processes, using grid-type Takagi-Sugeno fuzzy models and a priori knowledge. The proposed hybrid fuzzy convolution dynamic model consists of a non-linear fuzzy steady-state static and a gain-independent impulse response model-based dynamic part. The modelling of nonlinear pH processes is chosen as a realistic case study for demonstration of the proposed modelling approach. The off-line identified hybrid fuzzy convolution model is shown to be capable of modelling the nonlinear process and providing better multiple-step prediction than the conventional grid-type Takagi-Sugeno fuzzy model.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 22 条
[1]  
AlDuwaish H, 1997, AUTOMATICA, V33, P1871
[2]  
BABUSKA R, 1997, THESIS DELFT U TECHN
[3]   USE OF NEURAL NETS FOR DYNAMIC MODELING AND CONTROL OF CHEMICAL PROCESS SYSTEMS [J].
BHAT, N ;
MCAVOY, TJ .
COMPUTERS & CHEMICAL ENGINEERING, 1990, 14 (4-5) :573-583
[4]  
Bhat N. V., 1990, IEEE Control Systems Magazine, V10, P24, DOI 10.1109/37.55120
[5]  
BOSSLEY KM, 1997, THESIS U SOUTHAMPTON
[6]  
BROWN M, 1995, PROCEEDINGS OF 1995 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I-IV, P2139, DOI 10.1109/FUZZY.1995.409976
[7]  
COX MG, 1982, 182 DITC NAT PHYS LA
[8]  
DUWAISH HA, 1996, P I ELECT ENG D, V143, P255
[9]   USE OF HAMMERSTEIN MODELS IN IDENTIFICATION OF NONLINEAR-SYSTEMS [J].
ESKINAT, E ;
JOHNSON, SH ;
LUYBEN, WL .
AICHE JOURNAL, 1991, 37 (02) :255-268
[10]  
Grace A., 1994, THE MATHWORKS