Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning

被引:35
作者
Fletcher, Timothy L.
Davie, Stuart J.
Popelier, Paul L. A. [1 ]
机构
[1] MIB, 131 Princess St, Manchester M1 7DN, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM-CHEMICAL TOPOLOGY; MULTIPOLAR ELECTROSTATICS; ATOMIC PROPERTIES; FORCE-FIELD; MOLECULAR-MECHANICS; GLOBAL OPTIMIZATION; BIOMOLECULES; DENSITY; MODEL; WATER;
D O I
10.1021/ct500416k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Present computing power enables novel ways of modeling polarization. Here we show that the machine learning method kriging accurately captures the way the electron density of a topological atom responds to a change in the positions of the surrounding atoms. The success of this method is demonstrated on the four aromatic amino acids histidine, phenylalanine, tryptophan, and tyrosine. A new technique of varying training set sizes to vastly reduce training times while maintaining accuracy is described and applied to each amino acid. Each amino acid has its geometry distorted via normal modes of vibration over all local energy minima in the Ramachandran map. These geometries are then used to train the kriging models. Total electrostatic energies predicted by the kriging models for previously unseen geometries are compared to the true energies, yielding mean absolute errors of 2.9, 5.1, 4.2, and 2.8 kJ mol(1) for histidine, phenylalanine, tryptophan, and tyrosine, respectively.
引用
收藏
页码:3708 / 3719
页数:12
相关论文
共 90 条
[1]   Atomic properties of selected biomolecules. Part 1. The interpretation of atomic integration errors [J].
Aicken, FM ;
Popelier, PLA .
CANADIAN JOURNAL OF CHEMISTRY, 2000, 78 (04) :415-426
[2]  
Allinger N.L., 1998, Encyclopedia of computational chemistry, V2, P1028
[3]  
Asensio J.L., 2010, J.Am.Chem.Soc, V132, P17
[4]   ATOMS IN MOLECULES [J].
BADER, RFW .
ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) :9-15
[5]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[6]  
BATTAGLIA MR, 1981, CHEM PHYS LETT, V78, P420
[7]   Representing potential energy surfaces by high-dimensional neural network potentials [J].
Behler, J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (18)
[8]   Interacting quantum atoms:: A correlated energy decomposition scheme based on the Quantum Theory of Atoms in Molecules [J].
Blanco, MA ;
Pendás, AM ;
Francisco, E .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (06) :1096-1109
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   Multipolar electrostatics [J].
Cardamone, Salvatore ;
Hughes, Timothy J. ;
Popelier, Paul L. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (22) :10367-10387