AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats

被引:240
作者
Iglesias, MA
Ye, JM
Frangioudakis, G
Saha, AK
Tomas, E
Ruderman, NB
Cooney, GJ
Kraegen, EW
机构
[1] Garvan Inst Med Res, Diabet & Metab Program, Darlinghurst, NSW 2010, Australia
[2] Boston Univ, Sch Med, Boston, MA 02118 USA
关键词
D O I
10.2337/diabetes.51.10.2886
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Exercise improves insulin sensitivity. As AMIP-activated protein kinase (AMPK) plays an important role in muscle metabolism during exercise, we investigated the effects of the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-ribofuranoside (AICAR) on insulin action in insulin-resistant high-fat-fed (HF) rats. Rats received a subcutaneous injection of 250 mg/kg AICAR (HF-AIC) or saline (HF-Con). The next day, euglycemic-hyperinsulinemic clamp studies were performed. Glucose infusion rate during the clamp was enhanced (50%) in HF-AIC compared with HF-Con rats. Insulin-stimulated glucose uptake was improved in white but not in red quadriceps, whereas glycogen synthesis was improved in both red and white quadriceps of HF-AIC rats. HF-AIC rats also showed increased insulin suppressibility of hepatic glucose output (HGO). AICAR-induced responses in both liver and muscle were accompanied by reduced malonyl-CoA content. Clamp HGO correlated closely with hepatic triglyceride content (r = 0.67, P < 0.01). Thus, a single dose of AICAR leads to an apparent enhancement in whole-body, muscle, and liver insulin action in HF rats that extends beyond the expected time of AMFK activation. Whether altered tissue lipid metabolism mediates AICAR effects on insulin action remains to be determined. Follow-up studies suggest that at least some of the post-AICAR insulin-enhancing effects also occur in normal rats. Independent of this, the results suggest that pharmacological activation of AMFK may have potential in treating insulin-resistant states and type 2 diabetes.
引用
收藏
页码:2886 / 2894
页数:9
相关论文
共 50 条
[1]   Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle [J].
Alam, N ;
Saggerson, ED .
BIOCHEMICAL JOURNAL, 1998, 334 :233-241
[2]  
Aschenbach WG, 2001, DIABETES, V50, pA60
[3]   Effect of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats [J].
Bergeron, R ;
Previs, SF ;
Cline, GW ;
Perret, P ;
Russell, RR ;
Young, LH ;
Shulman, GI .
DIABETES, 2001, 50 (05) :1076-1082
[4]   Effect of AMPK activation on muscle glucose metabolism in conscious rats [J].
Bergeron, R ;
Russell, RR ;
Young, LH ;
Ren, JM ;
Marcucci, M ;
Lee, A ;
Shulman, GI .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 276 (05) :E938-E944
[5]   Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation - Inter-tissue and inter-species expression of CPT I and CPT II enzymes [J].
Brown, NF ;
Hill, JK ;
Esser, V ;
Kirkland, JL ;
Corkey, BE ;
Foster, DW ;
McGarry, JD .
BIOCHEMICAL JOURNAL, 1997, 327 :225-231
[6]   Chronic treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner [J].
Buhl, ES ;
Jessen, N ;
Schmitz, O ;
Pedersen, SB ;
Pedersen, O ;
Holman, GD ;
Lund, S .
DIABETES, 2001, 50 (01) :12-17
[7]   Liver AMP-activated protein kinase and acetyl-CoA carboxylase during and after exercise [J].
Carlson, CL ;
Winder, WW .
JOURNAL OF APPLIED PHYSIOLOGY, 1999, 86 (02) :669-674
[8]   RAPID METHOD FOR DETERMINATION OF GLYCOGEN CONTENT AND RADIOACTIVITY IN SMALL QUANTITIES OF TISSUE OR ISOLATED HEPATOCYTES [J].
CHAN, TM ;
EXTON, JH .
ANALYTICAL BIOCHEMISTRY, 1976, 71 (01) :96-105
[9]   Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle [J].
Delp, MD ;
Duan, CP .
JOURNAL OF APPLIED PHYSIOLOGY, 1996, 80 (01) :261-270
[10]   Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle [J].
Derave, W ;
Ai, H ;
Ihlemann, J ;
Witters, LA ;
Kristiansen, S ;
Richter, EA ;
Ploug, T .
DIABETES, 2000, 49 (08) :1281-1287