The finite-temperature relativistic Landau problem and the relativistic quantum Hall effect

被引:17
作者
Beneventano, C. G. [1 ]
Santangelo, E. M. [1 ]
机构
[1] Natl Univ La Plata, Dept Fis, Inst Fis La Plata, CONICET, RA-1900 La Plata, Argentina
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 23期
关键词
D O I
10.1088/0305-4470/39/23/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a study of the free energy and particle density of the relativistic Landau problem, and their relevance to the quantum Hall effect. First we study the zero-temperature Casimir energy and fermion number for Dirac fields in a (2+1)-dimensional Minkowski spacetime, in the presence of a uniform magnetic field perpendicular to the spatial manifold. Then, we go to the finite-temperature problem, with a chemical potential, introduced as a uniform zero component of the gauge potential. By performing a Lorentz boost, we obtain Hall's conductivity in the case of crossed electric and magnetic fields.
引用
收藏
页码:7457 / 7469
页数:13
相关论文
共 19 条
[1]   CHEMICAL-POTENTIALS IN GAUGE-THEORIES [J].
ACTOR, A .
PHYSICS LETTERS B, 1985, 157 (01) :53-56
[2]   Relativistic Landau problem at finite temperature [J].
Beneventano, C. G. ;
Santangelo, E. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21) :6137-6144
[3]   Finite-temperature properties of the Dirac operator under local boundary conditions [J].
Beneventano, CG ;
Santangelo, EM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (39) :9261-9273
[4]  
BENEVENTANO CG, 2005, UNPUB
[5]   On planar fermions with quartic interaction at finite temperature and density [J].
Cabra, DC ;
Rossini, GL .
EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (04) :529-532
[6]  
Chakraborty T., 1995, QUANTUM HALL EFFECTS
[7]   Dirac functional determinants in terms of the eta invariant and the noncommutative residue [J].
Cognola, G ;
Elizalde, E ;
Zerbini, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (03) :507-532
[8]   EFFECTIVE LAGRANGIAN AND ENERGY-MOMENTUM TENSOR IN DESITTER SPACE [J].
DOWKER, JS ;
CRITCHLEY, R .
PHYSICAL REVIEW D, 1976, 13 (12) :3224-3232
[9]  
ELIZALDE E, 1995, 19 PHYS APPL SPECTRA
[10]  
GRADSHTEYN L. S., 2000, TABLE INTEGRALS SERI