共 80 条
Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth
被引:343
作者:
Engelman, JA
Wykoff, CC
Yasuhara, S
Song, KS
Okamoto, T
Lisanti, MP
机构:
[1] YESHIVA UNIV ALBERT EINSTEIN COLL MED, DEPT MOL PHARMACOL, BRONX, NY 10461 USA
[2] WHITEHEAD INST BIOMED RES, CAMBRIDGE, MA 02142 USA
[3] CLEVELAND CLIN FDN, DEPT NEUROSCI, CLEVELAND, OH 44195 USA
关键词:
D O I:
10.1074/jbc.272.26.16374
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Caveolae are plasma membrane-attached vesicular organelles. Caveolin-1, a 21-24-kDa integral membrane protein, is a principal component of caveolae membranes in vivo. Both caveolae and caveolin are most abundantly expressed in terminally differentiated cells: adipocytes, endothelial cells, and muscle cells. Conversely, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes such as v-abl and H-ras (G12V); caveolae are absent from these cell lines. However, its remains unknown whether down-regulation of caveolin-1 protein and caveolae organelles contributes to their transformed phenotype. Here, we have expressed caveolin-1 in oncogenically transformed cells under the control of an inducible-expression system. Regulated induction of caveolin-1 expression was monitored by Western blot analysis and immunofluorescence microscopy. Our results indicate that caveolin-1 protein is expressed well using this system and correctly localizes to the plasma membrane. Induction of caveolin-1 expression in v-Abl-transformed and H-Ras (G12V)-transformed NIH 3T3 cells abrogated the anchorage-independent growth of these cells in soft agar and resulted in the de novo formation of caveolae as seen by transmission electron microscopy. Consistent with its antagonism of Ras-mediated cell transformation, caveolin-1 expression dramatically inhibited both Ras/MAPK-mediated and basal transcriptional activation of a mitogen-sensitive promoter. Using an established system to detect apoptotic cell death, it appears that the effects of caveolin-1 may, in part, be attributed to its ability to initiate apoptosis in rapidly dividing cells. In addition, we find that caveolin-1 expression levels are reversibly down-regulated by two distinct oncogenic stimuli. Taken together, our results indicate that down-regulation of caveolin-1 expression and caveolae organelles may be critical to maintaining the transformed phenotype in certain cell populations.
引用
收藏
页码:16374 / 16381
页数:8
相关论文