Mismatch repair and DNA damage signalling

被引:309
作者
Stojic, L [1 ]
Brun, R [1 ]
Jiricny, J [1 ]
机构
[1] Univ Zurich, Inst Mol Canc Res, CH-8008 Zurich, Switzerland
关键词
cell cycle arrest; checkpoint activation; DNA damage signalling; ionizing radiation; methylating agents; mismatch repair;
D O I
10.1016/j.dnarep.2004.06.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Postreplicative mismatch repair (MMR) increases the fidelity of DNA replication by up to three orders of magnitude, through correcting DNA polymerase errors that escaped proofreading. MMR also controls homologous recombination (HR) by aborting strand exchange between divergent DNA sequences. In recent years, MMR has also been implicated in the response of mammalian cells to DNA damaging agents. Thus, MMR-deficient cells were shown to be around 100-fold more resistant to killing by methylating agents of the S(N)1 type than cells with functional MMR. In the case of cisplatin, the sensitivity difference was lower, typically two- to three-fold, but was observed in all matched MMR-proficient and -deficient cell pairs. More controversial is the role of MMR in cellular response to other DNA damaging agents, such as ionizing radiation (IR), topoisomerase poisons, antimetabolites, UV radiation and DNA intercalators. The MMR-dependent DNA damage signalling pathways activated by the above agents are also ill-defined. To date, signalling cascades involving the Ataxia telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), as well as the stress-activated kinases JNK/SAPK and p38alpha have been linked with methylating agent and 6-thioguanine (TG) treatments. while cisplatin damage was reported to activate the c-Abl and JNK/SAPK kinases in MMR-dependent manner. MMR defects are found in several different cancer types, both familiar and sporadic, and it is possible that the involvement of the MMR system in DNA damage signalling play an important role in transformation. The scope of this article is to provide a brief overview of the recent literature on this subject and to raise questions that could be addressed in future studies. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1091 / 1101
页数:11
相关论文
共 114 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   ATM is activated in response to N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA alkylation [J].
Adamson, AW ;
Kim, WJ ;
Shangary, S ;
Baskaran, R ;
Brown, KD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (41) :38222-38229
[3]  
Aebi S, 1997, CLIN CANCER RES, V3, P1763
[4]  
Aebi S, 1996, CANCER RES, V56, P3087
[5]   Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-kinase/AKT in breast cancer cells [J].
Altiok, S ;
Batt, D ;
Altiok, N ;
Papautsky, A ;
Downward, J ;
Roberts, TM ;
Avraham, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (45) :32274-32278
[6]  
Anthoney DA, 1996, CANCER RES, V56, P1374
[7]  
Aquilina G, 1998, CANCER RES, V58, P135
[8]   Mismatch repair, G2/M cell cycle arrest and lethality after DNA damage [J].
Aquilina, G ;
Crescenzi, M ;
Bignami, M .
CARCINOGENESIS, 1999, 20 (12) :2317-2325
[9]  
Aquilina G, 2000, CLIN CANCER RES, V6, P671
[10]   MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1 [J].
Bellacosa, A ;
Cicchillitti, L ;
Schepis, F ;
Riccio, A ;
Yeung, AT ;
Matsumoto, Y ;
Golemis, EA ;
Genuardi, M ;
Neri, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3969-3974