Moduli dependent spectra of heterotic compactifications

被引:47
作者
Donagi, R [1 ]
He, YH
Ovrut, BA
Reinbacher, R
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.physletb.2004.08.010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Explicit methods are presented for computing the cohomology of stable, holomorphic vector bundles on elliptically fibered Calabi-Yau threefolds. The complete particle spectrum of the low-energy, four-dimensional theory is specified by the dimensions of specific cohomology groups. The spectrum is shown to depend on the choice of vector bundle moduli, jumping up from a generic minimal result to attain many higher values on subspaces of co-dimension one or higher in the moduli space. An explicit example is presented within the context of a heterotic vacuum corresponding to an SU(5) GUT in four dimensions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 28 条
[1]  
ANDREAS B, HEPTH9903052
[2]  
Buchbinder E, 2002, J HIGH ENERGY PHYS
[3]   Superpotentials for vector bundle moduli [J].
Buchbinder, EI ;
Donagi, R ;
Ovrut, BA .
NUCLEAR PHYSICS B, 2003, 653 (03) :400-420
[4]  
Buchbinder EI, 2002, J HIGH ENERGY PHYS
[5]  
Donagi R, 2004, J HIGH ENERGY PHYS
[6]  
Donagi R, 1999, J HIGH ENERGY PHYS
[7]  
Donagi R, 2001, J HIGH ENERGY PHYS
[8]  
Donagi R, 1999, J HIGH ENERGY PHYS
[9]  
Donagi R, 1999, J HIGH ENERGY PHYS
[10]  
Donagi R., 1997, Asian J. Math, V1, P214, DOI DOI 10.4310/AJM.1997.V1.N2.A1