Assessing snow albedo feedback in simulated climate change

被引:98
作者
Qu, Xin [1 ]
Hall, Alex [1 ]
机构
[1] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
关键词
D O I
10.1175/JCLI3750.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this paper the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect On Surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the Simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetar albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data. it is found that most simulations agree with ISCCP Values to within about 10%. despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor. enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about 1/3 of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main Source of the large divergence in simulations of snow albedo feedback. To reduce the divergence. attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.
引用
收藏
页码:2617 / 2630
页数:14
相关论文
共 33 条
[1]   The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations [J].
Anderson, JL ;
Balaji, V ;
Broccoli, AJ ;
Cooke, WF ;
Delworth, TL ;
Dixon, KW ;
Donner, LJ ;
Dunne, KA ;
Freidenreich, SM ;
Garner, ST ;
Gudgel, RG ;
Gordon, CT ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhost, AR ;
Lau, NC ;
Liang, Z ;
Malyshev, SL ;
Milly, PCD ;
Nath, MJ ;
Ploshay, JJ ;
Ramaswamy, V ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Soden, BJ ;
Stern, WF ;
Thompson, LA ;
Wilson, RJ ;
Wittenberg, AT ;
Wyman, BL .
JOURNAL OF CLIMATE, 2004, 17 (24) :4641-4673
[2]  
[Anonymous], 2001, PROJECTIONS FUTURE C
[3]  
Briegleb B. P., 2004, NCARTN463STR
[4]   INTERPRETATION OF SNOW-CLIMATE FEEDBACK AS PRODUCED BY 17 GENERAL-CIRCULATION MODELS [J].
CESS, RD ;
POTTER, GL ;
ZHANG, MH ;
BLANCHET, JP ;
CHALITA, S ;
COLMAN, R ;
DAZLICH, DA ;
DELGENIO, AD ;
DYMNIKOV, V ;
GALIN, V ;
JERRETT, D ;
KEUP, E ;
LACIS, AA ;
LETREUT, H ;
LIANG, XZ ;
MAHFOUF, JF ;
MCAVANEY, BJ ;
MELESHKO, VP ;
MITCHELL, JFB ;
MORCRETTE, JJ ;
NORRIS, PM ;
RANDALL, DA ;
RIKUS, L ;
ROECKNER, E ;
ROYER, JF ;
SCHLESE, U ;
SHEININ, DA ;
SLINGO, JM ;
SOKOLOV, AP ;
TAYLOR, KE ;
WASHINGTON, WM ;
WETHERALD, RT ;
YAGAI, I .
SCIENCE, 1991, 253 (5022) :888-892
[5]   A METHODOLOGY FOR UNDERSTANDING AND INTERCOMPARING ATMOSPHERIC CLIMATE FEEDBACK PROCESSES IN GENERAL-CIRCULATION MODELS [J].
CESS, RD ;
POTTER, GL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1988, 93 (D7) :8305-8314
[6]  
Collins W. D., 2004, NCARTN464STR
[7]   OBSERVED IMPACT OF SNOW COVER ON THE HEAT-BALANCE AND THE RISE OF CONTINENTAL SPRING TEMPERATURES [J].
GROISMAN, PY ;
KARL, TR ;
KNIGHT, RW .
SCIENCE, 1994, 263 (5144) :198-200
[8]  
GROISMAN PY, 1994, J CLIMATE, V7, P1633, DOI 10.1175/1520-0442(1994)007<1633:COSCTA>2.0.CO
[9]  
2
[10]  
Hall A, 2004, J CLIMATE, V17, P1550, DOI [10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO