Vibrational modes in aperiodic one-dimensional harmonic chains

被引:19
作者
de Moura, F. A. B. F. [1 ]
Viana, L. P.
Frery, A. C.
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
[2] Univ Fed Alagoas, Inst Comp, BR-57072970 Maceio, AL, Brazil
关键词
D O I
10.1103/PhysRevB.73.212302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present paper addresses the effect of aperiodicity in one-dimensional oscillatory systems. We study the nature of collective excitations in harmonic chains in the presence of aperiodic and pseudorandom mass distributions. Using the transfer matrix method and exact diagonalization on finite chains, we compute the localization length and the participation number of eigenmodes within the band of allowed frequencies. Our numerical calculations indicate that, for aperiodic arrays of masses, a new phase of extended states appears in this model. For pseudorandom masses distribution, all eigenstates remain localized except the uniform mode (omega=0). Solving numerically the Hamilton equations for momentum and displacement of the chain, we compute the spreading of an initially localized energy excitation. We show that, independent of the kind of initial excitation, an aperiodic structure of masses can induce ballistic transport of energy.
引用
收藏
页数:4
相关论文
共 47 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Vibrational modes in harmonic chains with diluted disorder [J].
Albuquerque, SS ;
de Moura, FABF ;
Lyra, ML .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 357 (01) :165-172
[3]   LOCALIZATION, MOBILITY EDGES, AND METAL-INSULATOR-TRANSITION IN A CLASS OF ONE-DIMENSIONAL SLOWLY VARYING DETERMINISTIC POTENTIALS [J].
DASSARMA, S ;
HE, S ;
XIE, XC .
PHYSICAL REVIEW B, 1990, 41 (09) :5544-5565
[4]   MOBILITY EDGE IN A MODEL ONE-DIMENSIONAL POTENTIAL [J].
DASSARMA, S ;
HE, S ;
XIE, XC .
PHYSICAL REVIEW LETTERS, 1988, 61 (18) :2144-2147
[5]   THE ABSENCE OF LOCALIZATION IN ONE-DIMENSIONAL DISORDERED HARMONIC CHAINS [J].
DATTA, PK ;
KUNDU, K .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (24) :4465-4478
[6]   ENERGY-TRANSPORT ONE-DIMENSIONAL HARMONIC CHAINS [J].
DATTA, PK ;
KUNDU, K .
PHYSICAL REVIEW B, 1995, 51 (10) :6287-6295
[7]   Delocalization in harmonic chains with long-range correlated random masses [J].
de Moura, FABF ;
Coutinho, MD ;
Raposo, EP ;
Lyra, ML .
PHYSICAL REVIEW B, 2003, 68 (01)
[8]   Delocalization and wave-packet dynamics in one-dimensional diluted Anderson models [J].
de Moura, FABF ;
Santos, MNB ;
Fulco, UL ;
Lyra, ML ;
Lazo, E ;
Onell, ME .
EUROPEAN PHYSICAL JOURNAL B, 2003, 36 (01) :81-86
[9]   Delocalization and spin-wave dynamics in ferromagnetic chains with long-range correlated random exchange [J].
de Moura, FABF ;
Coutinho, MD ;
Raposo, EP ;
Lyra, ML .
PHYSICAL REVIEW B, 2002, 66 (01) :144181-144185
[10]   Delocalization in the 1D Anderson model with long-range correlated disorder [J].
de Moura, FABF ;
Lyra, ML .
PHYSICAL REVIEW LETTERS, 1998, 81 (17) :3735-3738