Allelopathy as a mechanism for the invasion of Typha angustifolia

被引:78
作者
Jarchow, Meghann E. [1 ,2 ]
Cook, Bradley J. [2 ]
机构
[1] Iowa State Univ, Dept Agron, Ames, IA 50011 USA
[2] Minnesota State Univ, Dept Biol Sci, Mankato, MN 56001 USA
关键词
Activated carbon; Bolboschoenus fluviatilis; Competition; Minnesota; Novel weapons hypothesis; Soluble phenolics; ULTRAVIOLET-B RADIATION; AQUATIC PLANTS; MYCORRHIZAL COLONIZATION; DESCHAMPSIA-ANTARCTICA; COMPETITIVE ABILITY; PHENOLIC-ACIDS; LATIFOLIA; GROWTH; HYBRIDIZATION; INHIBITION;
D O I
10.1007/s11258-009-9573-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The direct competitive effects of exotic plants on natives are among the leading causes of plant extinctions worldwide. Allelopathy, one type of direct plant competition, has received relatively little research, particularly in aquatic and wetland systems, even though allelopathy can be a potent mechanism through which plant communities are structured. Typha angustifolia (narrow-leaved cattail) is an invasive exotic plant in North America that often forms monocultures in disturbed wetlands and is more invasive than native members of its genus. We tested whether T. angustifolia was allelopathic and whether it produced different biochemicals than a native congener by growing it with the native bulrush Bolboschoenus fluviatilis (river bulrush) in soil with and without activated carbon and by qualitatively and quantitatively comparing soluble phenolics produced in the roots of T. angustifolia and the native Typha latifolia (broad-leaved cattail). T. angustifolia had a strong allelopathic effect on B. fluviatilis, reducing the longest leaf length and root, shoot, and total biomass of B. fluviatilis. When the allelopathy of T. angustifolia was ameliorated by activated carbon, however, longest leaf length, ramet number, root biomass, shoot biomass, and total biomass of T. angustifolia were greatly reduced due to resource competition with B. fluviatilis. Furthermore, T. angustifolia produced different, but not more, soluble phenolics than T. latifolia suggesting that the identity of the phenolics is different between the two species rather than the concentrations. The allelopathic effects of T. angustifolia on a North American native wetland plant and its production of root biochemicals that appear to differ from those produced by a native congener are consistent with the possibility that T. angustifolia may use a novel allelochemical in its invasion of North American wetlands.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 56 条
[41]  
Rice E. L., 1984, Allelopathy.
[42]   The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass [J].
Ridenour, WM ;
Callaway, RM .
OECOLOGIA, 2001, 126 (03) :444-450
[43]   Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica [J].
Ruhland, CT ;
Day, TA .
PHYSIOLOGIA PLANTARUM, 2000, 109 (03) :244-251
[44]   The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica [J].
Ruhland, CT ;
Xiong, FS ;
Clark, WD ;
Day, TA .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2005, 81 (05) :1086-1093
[45]  
*SAS I, 2008, SAS REL 9 1
[46]   Chemistry and mechanisms of allelopathic interactions [J].
Seigler, DS .
AGRONOMY JOURNAL, 1996, 88 (06) :876-885
[47]   The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland [J].
Selbo, SM ;
Snow, AA .
AQUATIC BOTANY, 2004, 78 (04) :361-369
[48]   Community ecology theory as a framework for biological invasions [J].
Shea, K ;
Chesson, P .
TRENDS IN ECOLOGY & EVOLUTION, 2002, 17 (04) :170-176
[49]   Phenotype-genotype correlations in a series of Wolfram syndrome families [J].
Smith, CJA ;
Crock, PA ;
King, BR ;
Meldrum, CJ ;
Scott, RJ .
DIABETES CARE, 2004, 27 (08) :2003-2009
[50]  
SMITH SG, 2000, FLORA N AM N MEXICO