A self-seeding coreduction method for shape control of silver nanoplates

被引:89
作者
Jiang, Xuchuan [1 ]
Zeng, Qinghua [1 ]
Yu, Aibing [1 ]
机构
[1] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
关键词
D O I
10.1088/0957-4484/17/19/025
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work reports a newly developed synthesis method, i.e., a self-seeding coreduction method, for shape control of silver nanoparticles such as triangular nanoplates and circular nanodiscs. By this method, high surface-to-volume silver nanoplates (similar to 2.3 nm in thickness) were successfully generated. The distinct advantages of this method include no need to add external seeds, no need to use organic solvents that are environmentally unfriendly, being able to perform at room temperature, and synergetic use of a few reducing agents for better growth control of two-dimensional nanostructures. In particular, molecular dynamics simulation is used to quantify the interaction energies between surfactant molecules and different facets of silver crystal. Such molecular information, together with measurements using x-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) spectroscopy, has proven to be useful in understanding the growth mechanisms of silver nanoplates.
引用
收藏
页码:4929 / 4935
页数:7
相关论文
共 43 条
[1]   Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects [J].
Baletto, F ;
Ferrando, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :371-423
[2]   Photochemically grown silver nanoparticles with wavelength-controlled size and shape [J].
Callegari, A ;
Tonti, D ;
Chergui, M .
NANO LETTERS, 2003, 3 (11) :1565-1568
[3]   Synthesis and characterization of truncated triangular silver nanoplates [J].
Chen, SH ;
Carroll, DL .
NANO LETTERS, 2002, 2 (09) :1003-1007
[4]  
Cullity B. D., ELEMENTS XRAY DIFFRA
[5]   Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J].
Dick, LA ;
McFarland, AD ;
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (04) :853-860
[6]   Some interesting properties of metals confined in time and nanometer space of different shapes [J].
El-Sayed, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (04) :257-264
[7]   Stacking faults in formation of silver nanodisks [J].
Germain, V ;
Li, J ;
Ingert, D ;
Wang, ZL ;
Pileni, MP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (34) :8717-8720
[8]   Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed [J].
Gole, A ;
Murphy, CJ .
CHEMISTRY OF MATERIALS, 2004, 16 (19) :3633-3640
[9]   Synthesis of silver nanodisks using polystyrene mesospheres as templates [J].
Hao, EC ;
Kelly, KL ;
Hupp, JT ;
Schatz, GC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (51) :15182-15183
[10]   Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J].
Jana, NR ;
Gearheart, L ;
Murphy, CJ .
CHEMICAL COMMUNICATIONS, 2001, (07) :617-618