Refolding and structural characterization of the human p53 tumor suppressor protein

被引:32
作者
Bell, S
Hansen, S
Buchner, J [1 ]
机构
[1] Tech Univ Munich, Inst Organ Chem & Biochem, Lehrstuhl Biotechnol, D-85747 Garching, Germany
[2] Roche Diagnost GmbH, D-82372 Penzberg, Germany
关键词
p53; cancer; renaturation; protein folding; loosely folded protein;
D O I
10.1016/S0301-4622(02)00011-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human tumor suppressor p53 is a conformationally flexible and functionally complex protein that is only partially understood on a structural level. We expressed full-length p53 in the cytosol of Escherichia coli as inclusion bodies. To obtain active, recombinant p53, we varied renaturation conditions using DNA binding activity and oligomeric state as criteria for successful refolding. The optimized renaturation protocol allows the refolding of active, DNA binding p53 with correct quaternary structure and domain contact interfaces. The purified protein could be allosterically activated for DNA binding by addition of a C-terminally binding antibody. Analytical gelfiltration and chemical cross-linking confirmed the tetrameric quaternary structure and the spectroscopic analysis of renatured p53 by fluorescence and circular dichroism, suggested that native p53 is partially unstructured. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 77 条
[1]  
Altschuler EL, 1997, J PEPT RES, V50, P73
[2]   A PROTEOLYTIC FRAGMENT FROM THE CENTRAL REGION OF P53 HAS MARKED SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY WHEN GENERATED FROM WILD-TYPE BUT NOT FROM ONCOGENIC MUTANT P53-PROTEIN [J].
BARGONETTI, J ;
MANFREDI, JJ ;
CHEN, XB ;
MARSHAK, DR ;
PRIVES, C .
GENES & DEVELOPMENT, 1993, 7 (12B) :2565-2574
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   A METHOD FOR INCREASING THE YIELD OF PROPERLY FOLDED RECOMBINANT FUSION PROTEINS - SINGLE-CHAIN IMMUNOTOXINS FROM RENATURATION OF BACTERIAL INCLUSION-BODIES [J].
BUCHNER, J ;
PASTAN, I ;
BRINKMANN, U .
ANALYTICAL BIOCHEMISTRY, 1992, 205 (02) :263-270
[5]   RENATURATION, PURIFICATION AND CHARACTERIZATION OF RECOMBINANT FAB-FRAGMENTS PRODUCED IN ESCHERICHIA-COLI [J].
BUCHNER, J ;
RUDOLPH, R .
BIO-TECHNOLOGY, 1991, 9 (02) :157-162
[6]   Thermodynamic stability of wild-type and mutant p53 core domain [J].
Bullock, AN ;
Henckel, J ;
DeDecker, BS ;
Johnson, CM ;
Nikolova, PV ;
Proctor, MR ;
Lane, DP ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14338-14342
[7]   TRANSACTIVATION ABILITY OF P53 TRANSCRIPTIONAL ACTIVATION DOMAIN IS DIRECTLY RELATED TO THE BINDING-AFFINITY TO TATA-BINDING PROTEIN [J].
CHANG, J ;
KIM, DH ;
LEE, SW ;
CHOI, KY ;
SUNG, YC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :25014-25019
[8]  
Cho HS, 1996, PROTEIN SCI, V5, P262
[9]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[10]  
Clark ED, 1999, METHOD ENZYMOL, V309, P217