Chemical-Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide As an Oxygen Carrier

被引:224
作者
Shen, Laihong [1 ]
Wu, Jiahua [1 ]
Xiao, Jun [1 ]
Song, Qilei [1 ]
Xiao, Rui [1 ]
机构
[1] Southeast Univ, Thermoenergy Engn Res Inst, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID FUELS; METHANE; NIO;
D O I
10.1021/ef900033n
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chemical-looping combustion of biomass was carried out in a 10 kW(th) reactor with iron oxide as an oxygen carrier. A total 30 h of test was achieved with the same batch of iron oxide oxygen carrier. The effect of the fuel reactor temperature on gas composition of the fuel reactor and the air reactor, the proportion of biomass carbon reacting in the fuel reactor, and the conversion of biomass carbon to CO2 in the fuel reactor was experimentally investigated. The results showed that the CO production from biomass gasification with CO2 was more temperature dependent than the CO oxidation with iron oxide in the fuel reactor, and an increase in the fuel reactor temperature produced a higher increase for the CO production from biomass gasification than for the oxidation of CO by iron oxide. Although the conversion of biomass carbon to CO2 in the fuel reactor decreased with the increase of the fuel reactor temperature, there was a substantial increase in the proportion of biomass carbon reacting in the fuel reactor. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were utilized to characterize fresh and reacted oxygen carrier particles. The results showed that the transformation of Fe2O3 to Fe3O4 is the favored step in the process of iron oxide reduction with biomass syngas. The low reactivity of reacted oxygen carrier was mainly ascribed to the sintering grains on the particle surface. To restrain the surface sintering of oxygen carrier particles, an intensive oxidization of reduced oxygen carrier with air in the air reactor should be avoided in the process of oxygen carrier regeneration, and air staging should be adopted for the oxidization of reduced oxygen carrier with air in the air reactor.
引用
收藏
页码:2498 / 2505
页数:8
相关论文
共 19 条
[1]   Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier [J].
Abad, A ;
Mattisson, T ;
Lyngfelt, A ;
Rydén, M .
FUEL, 2006, 85 (09) :1174-1185
[2]   Selection of oxygen carriers for chemical-looping combustion [J].
Adánez, J ;
de Diego, LF ;
García-Labiano, F ;
Gayán, P ;
Abad, A ;
Palacios, JM .
ENERGY & FUELS, 2004, 18 (02) :371-377
[3]   Design and operation of a 10 kWth chemical-looping combustor for solid fuels -: Testing with South African coal [J].
Berguerand, Nicolas ;
Lyngfelt, Anders .
FUEL, 2008, 87 (12) :2713-2726
[4]   The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor [J].
Berquerand, Nicolas ;
Lyngfelt, Anders .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2008, 2 (02) :169-179
[5]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[6]   Development and performance of Cu-based oxygen carriers for chemical-looping combustion [J].
Chuang, S. Y. ;
Dennis, J. S. ;
Hayhurst, A. N. ;
Scott, S. A. .
COMBUSTION AND FLAME, 2008, 154 (1-2) :109-121
[7]   Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane [J].
Corbella, Beatriz M. ;
Maria Palacios, Jose .
FUEL, 2007, 86 (1-2) :113-122
[8]   Development of Cu-based oxygen carriers for chemical-looping combustion [J].
de Diego, LF ;
García-Labiano, F ;
Adánez, J ;
Gayán, P ;
Abad, A ;
Corbella, BM ;
Palacios, JM .
FUEL, 2004, 83 (13) :1749-1757
[9]   Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200 °C [J].
Ishida, M ;
Yamamoto, M ;
Ohba, T .
ENERGY CONVERSION AND MANAGEMENT, 2002, 43 (9-12) :1469-1478
[10]   Reactivity study on a novel hydrogen fueled chemical-looping combustion [J].
Jin, HG ;
Ishida, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (08) :889-894