Subtlety of determining the critical exponent ν of the spin-1/2 Heisenberg model with a spatially staggered anisotropy on the honeycomb lattice

被引:15
作者
Jiang, F-J [1 ]
Gerber, U. [1 ]
机构
[1] Univ Bern, Inst Theoret Phys, Ctr Res & Educ Fundamental Phys, CH-3012 Bern, Switzerland
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2009年
关键词
quantum Monte Carlo simulations; quantum phase transitions (theory); HIGH-TEMPERATURE SUPERCONDUCTOR; ANTIFERROMAGNET; SYSTEMS; LIQUID; STATE; S=1/2;
D O I
10.1088/1742-5468/2009/09/P09016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Puzzled by the indication of a new critical theory for the spin-1/2 Heisenberg model with a spatially staggered anisotropy on the square lattice, as suggested in Wenzel (2008 Phys. Rev. Lett. 101 127202), we study a similar anisotropic spin-1/2 Heisenberg model on the honeycomb lattice. The critical point where the phase transition occurs due to the dimerization as well as the critical exponent. are analyzed in great detail. Remarkably, using most of the available data points in conjunction with the expected finite-size scaling ansatz with a sub-leading correction indeed leads to a consistent nu = 0.691(2) with that calculated in Wenzel (2008 Phys. Rev. Lett. 101 127202). However, by using the data with a large number of spins N, we obtain nu = 0.707(6) which agrees with the most accurate Monte Carlo O(3) value. = 0.7112(5) as well.
引用
收藏
页数:11
相关论文
共 21 条
[1]   On a renormalization group approach to dimensional crossover [J].
Affleck, I ;
Halperin, BI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2627-2631
[2]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[3]   Quantum phase transition in a Heisenberg antiferromagnet on a square lattice with strong plaquette interactions [J].
Albuquerque, A. Fabricio ;
Troyer, Matthias ;
Oitmaa, Jaan .
PHYSICAL REVIEW B, 2008, 78 (13)
[4]  
Barber MN., 1983, PHASE TRANSITIONS CR, Vvol 8
[5]   AN INVESTIGATION OF FINITE SIZE SCALING [J].
BREZIN, E .
JOURNAL DE PHYSIQUE, 1982, 43 (01) :15-22
[6]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[7]   Critical exponents and equation of state of the three-dimensional Heisenberg universality class [J].
Campostrini, M ;
Hasenbusch, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW B, 2002, 65 (14) :1-21
[8]   SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION [J].
FISHER, ME ;
BARBER, MN .
PHYSICAL REVIEW LETTERS, 1972, 28 (23) :1516-&
[9]   Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45 [J].
Hinkov, V. ;
Haug, D. ;
Fauque, B. ;
Bourges, P. ;
Sidis, Y. ;
Ivanov, A. ;
Bernhard, C. ;
Lin, C. T. ;
Keimer, B. .
SCIENCE, 2008, 319 (5863) :597-600
[10]   Spin dynamics in the pseudogap state of a high-temperature superconductor [J].
Hinkov, V. ;
Bourges, P. ;
Pailhes, S. ;
Sidis, Y. ;
Ivanov, A. ;
Frost, C. D. ;
Perring, T. G. ;
Lin, C. T. ;
Chen, D. P. ;
Keimer, B. .
NATURE PHYSICS, 2007, 3 (11) :780-785