Plant growth-promoting bacteria confer resistance in tomato plants to salt stress

被引:783
作者
Mayak, S
Tirosh, T
Glick, BR
机构
[1] Hebrew Univ Jerusalem, Fac Agr Food & Environm Qual Sci, Robert H Smith Inst Plant Sci & Genet Agr, Kennedy Leigh Ctr Hort Res, IL-76100 Rehovot, Israel
[2] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada
关键词
ACC deaminase; Lycopersicon esculentum; plant growth-promoting bacteria; salt stress;
D O I
10.1016/j.plaphy.2004.05.009
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The object of the work is to evaluate whether rhizobacteria populating dry salty environments can increase resistance in tomato to salt stress. Seven strains of plant growth-promoting bacteria that have 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were isolated from soil samples taken from the Arava region of southern Israel. Following growth of these seedlings in the presence of 43 mM NaCl for 7 weeks, the bacterium that promoted growth to the greatest extent was selected for further study. DNA analysis of the 16S RNA indicated that the selected bacterium was Achromobacter piechaudii. This bacterium significantly increased the fresh and dry weights of tomato seedlings grown in the presence of up to 172 mM NaCl salt. The bacterium reduced the production of ethylene by tomato seedlings, which was otherwise stimulated when seedlings were challenged with increasing salt concentrations, but did not reduce the content of sodium. However, it slightly increased the uptake of phosphorous and potassium, which may contribute in part to activation of processes involved in the alleviation of the effect of salt. In the presence of salt the bacterium increased the water use efficiency (WUE). This may suggest that the bacterium act to alleviate the salt suppression of photosynthesis. However, the detailed mechanism was not elucidated. The work described in this report is a first step in the development of productive agricultural systems in saline environments. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:565 / 572
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 1973, ETHYLENE PLANT BIOL
[2]  
[Anonymous], 2000, Biochemistry and Molecular Biology of Plants
[3]   BIOSYNTHESIS OF STRESS ETHYLENE INDUCED BY WATER DEFICIT [J].
APELBAUM, A ;
YANG, SF .
PLANT PHYSIOLOGY, 1981, 68 (03) :594-596
[4]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[5]   Sodium transport and salt tolerance in plants [J].
Blumwald, E .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (04) :431-434
[6]  
Cuartero J, 1999, SCI HORTIC-AMSTERDAM, V78, P83, DOI 10.1016/S0304-4238(98)00191-5
[7]   EXPERIMENTS WITH SOME MICROORGANISMS WHICH UTILIZE ETHANE AND HYDROGEN [J].
DWORKIN, M ;
FOSTER, JW .
JOURNAL OF BACTERIOLOGY, 1958, 75 (05) :592-603
[8]   ETHYLENE EVOLUTION AND AMMONIUM ACCUMULATION BY TOMATO PLANTS UNDER WATER AND SALINITY STRESSES .2. [J].
FENG, JN ;
BARKER, AV .
JOURNAL OF PLANT NUTRITION, 1992, 15 (11) :2471-2490
[9]  
Glick B., 1999, BIOCH GENETIC MECH U
[10]   Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens [J].
Glick, BR ;
Bashan, Y .
BIOTECHNOLOGY ADVANCES, 1997, 15 (02) :353-378