A small protein that mediates the activation of a two-component system by another two-component system

被引:210
作者
Kox, LFF [1 ]
Wösten, MMSM [1 ]
Groisman, EA [1 ]
机构
[1] Washington Univ, Sch Med, Howard Hughes Med Inst, Dept Mol Microbiol, St Louis, MO 63110 USA
关键词
magnesium; PhoP-PhoQ; PmrA-PmrB; signal transduction; transcription;
D O I
10.1093/emboj/19.8.1861
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The PmrA-PmrB two-component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA-activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two-component system, PhoP-PhoQ. Here, we define the genetic basis for the interaction between the PhoP-PhoQ and PmrA-PmrB systems. We have identified pmrD as a PhoP-activated gene that mediates the transcriptional activation of PmrA-regulated genes during growth in low magnesium. When transcription of pmrD is driven from a heterologous promoter, expression of PmrA-activated genes occurs even at repressing magnesium concentrations and becomes independent of the phoP and phoQ genes. The PmrD effect is specific for PmrA-regulated genes and requires functional PmrA and PmrB proteins, A pmrD mutant is sensitive to polymyxin if grown in low magnesium, but resistant if grown in high iron. The PmrD protein controls the activity of the PmrA-PmrB system at a post-transcriptional level.
引用
收藏
页码:1861 / 1872
页数:12
相关论文
共 41 条
[1]  
[Anonymous], 1980, ADV BACTERIAL GENET
[2]   Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator:: Bacillus subtilis PhoP directly regulates production of ResD [J].
Birkey, SM ;
Liu, W ;
Zhang, XH ;
Duggan, MF ;
Hulett, FM .
MOLECULAR MICROBIOLOGY, 1998, 30 (05) :943-953
[3]   Two-component signal transduction in Bacillus subtilis:: How one organism sees its world [J].
Fabret, C ;
Feher, VA ;
Hoch, JA .
JOURNAL OF BACTERIOLOGY, 1999, 181 (07) :1975-1983
[4]   A SALMONELLA LOCUS THAT CONTROLS RESISTANCE TO MICROBICIDAL PROTEINS FROM PHAGOCYTIC-CELLS [J].
FIELDS, PI ;
GROISMAN, EA ;
HEFFRON, F .
SCIENCE, 1989, 243 (4894) :1059-1062
[5]   MUTANTS OF SALMONELLA-TYPHIMURIUM THAT CANNOT SURVIVE WITHIN THE MACROPHAGE ARE AVIRULENT [J].
FIELDS, PI ;
SWANSON, RV ;
HAIDARIS, CG ;
HEFFRON, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (14) :5189-5193
[6]   MOLECULAR, FUNCTIONAL, AND EVOLUTIONARY ANALYSIS OF SEQUENCES SPECIFIC TO SALMONELLA [J].
GROISMAN, EA ;
STURMOSKI, MA ;
SOLOMON, FR ;
LIN, R ;
OCHMAN, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :1033-1037
[7]   SALMONELLA-TYPHIMURIUM PHOP VIRULENCE GENE IS A TRANSCRIPTIONAL REGULATOR [J].
GROISMAN, EA ;
CHIAO, E ;
LIPPS, CJ ;
HEFFRON, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (18) :7077-7081
[8]   Regulation of polymyxin resistance and adaptation to low-Mg2+ environments [J].
Groisman, EA ;
Kayser, J ;
Soncini, FC .
JOURNAL OF BACTERIOLOGY, 1997, 179 (22) :7040-7045
[9]   PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance [J].
Gunn, JS ;
Miller, SI .
JOURNAL OF BACTERIOLOGY, 1996, 178 (23) :6857-6864
[10]   PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance [J].
Gunn, JS ;
Lim, KB ;
Krueger, J ;
Kim, K ;
Guo, L ;
Hackett, M ;
Miller, SI .
MOLECULAR MICROBIOLOGY, 1998, 27 (06) :1171-1182