Estimating the Lyapunov exponents of discrete systems

被引:38
作者
Li, CP [1 ]
Chen, GR
机构
[1] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[2] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1063/1.1741751
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, our aim is to determine both upper and lower bounds for all the Lyapunov exponents of a given finite-dimensional discrete map. To show the efficiency of the proposed estimation method, two examples are given, including the well-known Henon map and a coupled map lattice. (C) 2004 American Institute of Physics.
引用
收藏
页码:343 / 346
页数:4
相关论文
共 31 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
[Anonymous], 2012, Practical numerical algorithms for chaotic systems
[3]  
[Anonymous], 1988, EQUILIBRIUM CHAOS PR
[4]  
[Anonymous], 1997, FIXED POINT THEORY B
[5]   SMALE HORSESHOE MAP VIA TERNARY NUMBERS [J].
BANKS, J ;
DRAGAN, V .
SIAM REVIEW, 1994, 36 (02) :265-271
[6]  
Bhatia R., 2013, MATRIX ANAL
[7]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[8]  
Block L.S., 1992, DYNAMICS ONE DIMENSI
[9]  
Chen G., 1998, CHAOS ORDER METHODOL
[10]   CELLULAR NEURAL NETWORKS - APPLICATIONS [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1273-1290