Hydrogen Detection by Polyaniline Nanofibers on Gold and Platinum Electrodes

被引:60
作者
Fowler, Jesse D. [1 ]
Virji, Shabnam [1 ]
Kaner, Richard B. [2 ,3 ]
Weiller, Bruce H. [1 ]
机构
[1] Aerosp Corp, Mat Proc & Evaluat Dept, Phys Sci Lab, Los Angeles, CA 90009 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
GAS SENSORS; WORK FUNCTION; SILICON STRUCTURES; CHEMICAL SENSORS; CONDUCTIVITY; ADSORPTION; AMMONIA; SURFACE; TRANSISTOR; DIAMETER;
D O I
10.1021/jp810500q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polyaniline nanofibers were deposited on either gold or platinum electrodes and used as resistive sensors for the detection of hydrogen. In earlier work (J. Phys. Chem. B 2006, 110, 22266-22270), we showed that hydrogen interacts directly with polyaniline nanofibers to induce a small resistance decrease (-3%) at low concentrations of hydrogen (1%) using gold electrodes. This work showed that the sensor response on gold electrodes is due to hydrogen interaction with the polyaniline nanofibers. However, with platinum electrodes a much larger resistance increase (+65%) is observed under the same conditions. The sensor response on platinum electrodes is due to hydrogen interaction with platinum at the polyaniline-platinum interface. Hydrogen facilitates the formation of a Schottky barrier between platinum and polyaniline through a change in work function as platinum is converted to platinum hydride. The work function of polyaniline nanofibers was measured, and a model for sensor response is presented based on the relative work functions of the platinum, platinum hydride, and polyaniline nanofibers. Platinum hydride formation is fully reversible with the introduction of oxygen that converts the platinum hydride to water. The greater sensitivity of the platinum sensor can be used to detect hydrogen at a concentration of 10 ppm.
引用
收藏
页码:6444 / 6449
页数:6
相关论文
共 41 条
[1]   Diameter-Controlled Synthesis of Polyaniline Nanofibers [J].
Anderson, Rika E. ;
Ostrowski, Alexis D. ;
Gran, Danielle E. ;
Fowler, Jesse D. ;
Hopkins, Alan R. ;
Villahermosa, Randy M. .
POLYMER BULLETIN, 2008, 61 (05) :563-568
[2]  
[Anonymous], 1978, Metal-Semiconductors Contacts
[3]  
BAIKIE ID, UNPUB
[4]   Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors [J].
Briand, D ;
Krauss, A ;
van der Schoot, B ;
Weimar, U ;
Barsan, N ;
Göpel, W ;
de Rooij, NF .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 68 (1-3) :223-233
[5]   ELECTRICAL-CONDUCTIVITY IN DOPED POLYACETYLENE [J].
CHIANG, CK ;
FINCHER, CR ;
PARK, YW ;
HEEGER, AJ ;
SHIRAKAWA, H ;
LOUIS, EJ ;
GAU, SC ;
MACDIARMID, AG .
PHYSICAL REVIEW LETTERS, 1977, 39 (17) :1098-1101
[6]   ADSORPTION OF HYDROGEN ON A PT(111) SURFACE [J].
CHRISTMANN, K ;
ERTL, G ;
PIGNET, T .
SURFACE SCIENCE, 1976, 54 (02) :365-392
[7]  
Conn C, 1998, ELECTROANAL, V10, P1137, DOI 10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO
[8]  
2-1
[9]   Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air [J].
Domansky, K ;
Baldwin, DL ;
Grate, JW ;
Hall, TB ;
Li, J ;
Josowicz, M ;
Janata, J .
ANALYTICAL CHEMISTRY, 1998, 70 (03) :473-481
[10]   QUASI-STATIC AND HIGH-FREQUENCY C(V)-RESPONSE OF THIN PLATINUM METAL-OXIDE SILICON STRUCTURES TO AMMONIA [J].
FARE, T ;
SPETZ, A ;
ARMGARTH, M ;
LUNDSTROM, I .
SENSORS AND ACTUATORS, 1988, 14 (04) :369-386