Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry

被引:3045
作者
Elias, Joshua E.
Gygi, Steven P.
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Taplin Biol Mass Spect Facil, Boston, MA 02115 USA
关键词
D O I
10.1038/nmeth1019
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Liquid chromatography and tandem mass spectrometry (LC-MS/ MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/ MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 22 条
[1]   Large-scale characterization of HeLa cell nuclear phosphoproteins [J].
Beausoleil, SA ;
Jedrychowski, M ;
Schwartz, D ;
Elias, JE ;
Villén, J ;
Li, JX ;
Cohn, MA ;
Cantley, LC ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12130-12135
[2]   A probability-based approach for high-throughput protein phosphorylation analysis and site localization [J].
Beausoleil, Sean A. ;
Villen, Judit ;
Gerber, Scott A. ;
Rush, John ;
Gygi, Steven P. .
NATURE BIOTECHNOLOGY, 2006, 24 (10) :1285-1292
[3]   Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra [J].
Chen, Y ;
Kwon, SW ;
Kim, SC ;
Zhao, YM .
JOURNAL OF PROTEOME RESEARCH, 2005, 4 (03) :998-1005
[4]   Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations [J].
Elias, JE ;
Haas, W ;
Faherty, BK ;
Gygi, SP .
NATURE METHODS, 2005, 2 (09) :667-675
[5]   Intensity-based protein identification by machine learning from a library of tandem mass spectra [J].
Elias, JE ;
Gibbons, FD ;
King, OD ;
Roth, FP ;
Gygi, SP .
NATURE BIOTECHNOLOGY, 2004, 22 (02) :214-219
[6]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[7]   Enhanced analysis of metastatic prostate cancer using stable isotopes and high mass accuracy instrumentation [J].
Everley, PA ;
Bakalarski, CE ;
Elias, JE ;
Waghorne, CG ;
Beausoleil, SA ;
Gerber, SA ;
Faherty, BK ;
Zetter, BR ;
Gygi, SP .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (05) :1224-1231
[8]   Optimization and use of peptide mass measurement accuracy in shotgun proteomics [J].
Haas, Wilhelm ;
Faherty, Brendan K. ;
Gerber, Scott A. ;
Elias, Joshua E. ;
Beausoleil, Sean A. ;
Bakalarski, Corey E. ;
Li, Xue ;
Villen, Judit ;
Gygi, Steven P. .
MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (07) :1326-1337
[9]   Randomized sequence databases for tandem mass spectrometry peptide and protein identification [J].
Higdon, R ;
Hogan, JM ;
Van Belle, G ;
Kolker, E .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2005, 9 (04) :364-379
[10]   Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search [J].
Keller, A ;
Nesvizhskii, AI ;
Kolker, E ;
Aebersold, R .
ANALYTICAL CHEMISTRY, 2002, 74 (20) :5383-5392