Actin-dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons

被引:54
作者
Yao, Jun [1 ]
Qi, Jinshun [1 ]
Chen, Gong [1 ]
机构
[1] Penn State Univ, Dept Biol, Huck Inst Life Sci, University Pk, PA 16802 USA
关键词
actin; activity; synaptic plasticity; presynaptic; silent synapse; hippocampus;
D O I
10.1523/JNEUROSCI.1183-06.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Developing neurons have greater capacity in experience-dependent plasticity than adult neurons but the molecular mechanism is not well understood. Here we report a developmentally regulated long-term synaptic plasticity through actin-dependent activation of presynaptic silent synapses in cultured hippocampal neurons. Live FM 1-43 imaging and retrospective immunocytochemistry revealed that many presynaptic boutons in immature neurons are functionally silent at resting conditions, but can be converted into active ones after repetitive neuronal stimulation. The activation of presynaptic silent synapses is dependent on L-type calcium channels and protein kinase A (PKA)/PKC signaling pathways. Moreover, blocking actin polymerization with latrunculin A and cytochalasin B abolishes long-term increase of presynaptic functional boutons induced by repetitive stimulation, whereas actin polymerizer jasplakinolide increases the number of active boutons in immature neurons. In mature neurons, however, presynaptic boutons are mostly functional and repetitive stimulation did not induce additional enhancement. Quantitative immunostaining with phalloidin revealed a significant increase in axonal F-actin level after repetitive stimulation in immature but not mature neurons. These results suggest that actin-dependent activation of presynaptic silent synapses contributes significantly to the long-term synaptic plasticity during neuronal development.
引用
收藏
页码:8137 / 8147
页数:11
相关论文
共 69 条
  • [1] Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory
    Abel, T
    Nguyen, PV
    Barad, M
    Deuel, TAS
    Kandel, ER
    [J]. CELL, 1997, 88 (05) : 615 - 626
  • [2] Activity-induced targeting of profilin and stabilization of dendritic spine morphology
    Ackermann, M
    Matus, A
    [J]. NATURE NEUROSCIENCE, 2003, 6 (11) : 1194 - 1200
  • [3] Assembly of presynaptic active zones from cytoplasmic transport packets
    Ahmari, SE
    Buchanan, J
    Smith, SJ
    [J]. NATURE NEUROSCIENCE, 2000, 3 (05) : 445 - 451
  • [4] Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: Maintenance of core components independent of actin filaments and microtubules
    Allison, DW
    Chervin, AS
    Gelfand, VI
    Craig, AM
    [J]. JOURNAL OF NEUROSCIENCE, 2000, 20 (12) : 4545 - 4554
  • [5] Allison DW, 1998, J NEUROSCI, V18, P2423
  • [6] Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation
    Antonova, I
    Arancio, O
    Trillat, AC
    Wang, HG
    Zablow, L
    Udo, H
    Kandel, ER
    Hawkins, RD
    [J]. SCIENCE, 2001, 294 (5546) : 1547 - 1550
  • [7] REGULATION OF GENE-EXPRESSION IN HIPPOCAMPAL-NEURONS BY DISTINCT CALCIUM SIGNALING PATHWAYS
    BADING, H
    GINTY, DD
    GREENBERG, ME
    [J]. SCIENCE, 1993, 260 (5105) : 181 - 186
  • [8] STRUCTURAL-CHANGES ACCOMPANYING MEMORY STORAGE
    BAILEY, CH
    KANDEL, ER
    [J]. ANNUAL REVIEW OF PHYSIOLOGY, 1993, 55 : 397 - 426
  • [9] OPTICAL ANALYSIS OF SYNAPTIC VESICLE RECYCLING AT THE FROG NEUROMUSCULAR-JUNCTION
    BETZ, WJ
    BEWICK, GS
    [J]. SCIENCE, 1992, 255 (5041) : 200 - 203
  • [10] CREB phosphorylation and dephosphorylation: A Ca2(+)- and stimulus duration-dependent switch for hippocampal gene expression
    Bito, H
    Deisseroth, K
    Tsien, RW
    [J]. CELL, 1996, 87 (07) : 1203 - 1214