Decomposition of balanced matrices

被引:42
作者
Conforti, M
Cornuéjols, G
Rao, MR
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA
[3] Univ Padua, Dept Math Sci, I-35131 Padua, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1006/jctb.1999.1932
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 0, 1 matrix is balanced if it does not contain a square submatrix of odd order with two ones per row and per column. We show that a balanced 0, 1 matrix is either totally unimodular or its bipartite representation has a cutset consisting of two adjacent nodes and some of their neighbors. This result yields a polytime recognition algorithm for balancedness. To prove the result, we first prove a decomposition theorem for balanced 0, 1 matrices that are not strongly balanced. (C) 1999 Academic Press.
引用
收藏
页码:292 / 406
页数:115
相关论文
共 31 条
[1]   CHARACTERIZATIONS OF TOTALLY BALANCED MATRICES [J].
ANSTEE, RP ;
FARBER, M .
JOURNAL OF ALGORITHMS, 1984, 5 (02) :215-230
[2]  
BERGE C, 1980, MATH PROGRAM STUD, V12, P163, DOI 10.1007/BFb0120894
[3]   MINIMAX RELATIONS FOR THE PARTIAL Q-COLORINGS OF A GRAPH [J].
BERGE, C .
DISCRETE MATHEMATICS, 1989, 74 (1-2) :3-14
[4]  
BERGE C, 1970, ANN NY ACAD SCI, V175, P32
[5]  
BERGE C, 1970, C MATH SOC J BOLYAI, V4, P119
[6]  
Berge C, 1973, GRAPHS HYPERGRAPHS
[7]  
Berge C., 1972, Math. Program., V2, P19
[8]  
Berge C., 1984, ANN DISCRETE MATH, V21, P3
[9]   CHARACTERIZATION OF TOTALLY UNIMODULAR MATRICES [J].
CAMION, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (05) :1068-&
[10]  
Commoner F.G., 1973, Networks, V3, P351