Automated high-dimensional flow cytometric data analysis

被引:276
作者
Pyne, Saumyadipta [1 ]
Hu, Xinli [1 ]
Wang, Kui [3 ]
Rossin, Elizabeth [1 ]
Lin, Tsung-I [4 ]
Maier, Lisa M. [1 ,5 ,6 ]
Baecher-Allan, Clare [5 ,6 ]
McLachlan, Geoffrey J. [2 ,3 ]
Tamayo, Pablo [1 ]
Hafler, David A. [1 ,5 ,6 ]
De Jager, Philip L. [1 ,5 ,6 ,7 ]
Mesirov, Jill P. [1 ]
机构
[1] MIT & Harvard, Broad Inst, Cambridge, MA 02142 USA
[2] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4072, Australia
[3] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
[4] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
[5] Brigham & Womens Hosp, Ctr Neurol Dis, Div Mol Immunol, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Boston, MA 02115 USA
[7] Partners Ctr Personalized Genet Med, Boston, MA 02115 USA
基金
美国国家科学基金会; 澳大利亚研究理事会; 美国国家卫生研究院;
关键词
finite mixture model; flow cytometry; multivariate skew distribution; SKEW T-DISTRIBUTION; CELLS; IDENTIFICATION; INNOVATION; PATTERNS; SET;
D O I
10.1073/pnas.0903028106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flow cytometric analysis allows rapid single cell interrogation of surface and intracellular determinants by measuring fluorescence intensity of fluorophore-conjugated reagents. The availability of new platforms, allowing detection of increasing numbers of cell surface markers, has challenged the traditional technique of identifying cell populations by manual gating and resulted in a growing need for the development of automated, high-dimensional analytical methods. We present a direct multivariate finite mixture modeling approach, using skew and heavy-tailed distributions, to address the complexities of flow cytometric analysis and to deal with high-dimensional cytometric data without the need for projection or transformation. We demonstrate its ability to detect rare populations, to model robustly in the presence of outliers and skew, and to perform the critical task of matching cell populations across samples that enables downstream analysis. This advance will facilitate the application of flow cytometry to new, complex biological and clinical problems.
引用
收藏
页码:8519 / 8524
页数:6
相关论文
共 28 条
[1]   Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :367-389
[2]   MHC class II expression identifies functionally distinct human regulatory T cells [J].
Baecher-Allan, Clare ;
Wolf, Elizabeth ;
Haller, David A. .
JOURNAL OF IMMUNOLOGY, 2006, 176 (08) :4622-4631
[3]   Mixture modeling approach to flow cytometry data [J].
Boedigheimer, Michael J. ;
Ferbas, John .
CYTOMETRY PART A, 2008, 73A (05) :421-429
[4]   Statistical mixture modeling for cell subtype identification in flow cytometry [J].
Chan, Cliburn ;
Feng, Feng ;
Ottinger, Janet ;
Foster, David ;
West, Mike ;
Kepler, Thomas B. .
CYTOMETRY PART A, 2008, 73A (08) :693-701
[5]   Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines [J].
Choy, Edwin ;
Yelensky, Roman ;
Bonakdar, Sasha ;
Plenge, Robert M. ;
Saxena, Richa ;
De Jager, Philip L. ;
Shaw, Stanley Y. ;
Wolfish, Cara S. ;
Slavik, Jacqueline M. ;
Cotsapas, Chris ;
Rivas, Manuel ;
Dermitzakis, Emmanouil T. ;
Cahir-McFarland, Ellen ;
Kieff, Elliott ;
Hafler, David ;
Daly, Mark J. ;
Altshuler, David .
PLOS GENETICS, 2008, 4 (11)
[6]   A new automated flow cytometry data analysis approach for the diagnostic screening of neoplastic B-cell disorders in peripheral blood samples with absolute lymphocytosis [J].
Costa, E. S. ;
Arroyo, M. E. ;
Pedreira, C. E. ;
Garcia-Marcos, M. A. ;
Tabernero, M. D. ;
Almeida, J. ;
Orfao, A. .
LEUKEMIA, 2006, 20 (07) :1221-1230
[7]   11-color, 13-parameter flow cytometry: Identification of human naive T cells by phenotype, function, and T-cell receptor diversity [J].
De Rosa, SC ;
Herzenberg, LA ;
Herzenberg, LA ;
Roederer, M .
NATURE MEDICINE, 2001, 7 (02) :245-248
[8]   Beyond six colors: A new era in flow cytometry [J].
De Rosa, Stephen C. ;
Brenchley, Jason M. ;
Roederer, Mario .
NATURE MEDICINE, 2003, 9 (01) :112-117
[9]   ANALYZING MULTIVARIATE FLOW CYTOMETRIC DATA IN AQUATIC SCIENCES [J].
DEMERS, S ;
KIM, J ;
LEGENDRE, P ;
LEGENDRE, L .
CYTOMETRY, 1992, 13 (03) :291-298
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38