Estimating degradation model parameters using neighborhood pattern distributions: An optimization approach

被引:23
作者
Kanungo, T
Zheng, QG
机构
[1] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
[2] Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
degradation models; parameter estimation; direct search algorithms; neighborhood pattern distributions;
D O I
10.1109/TPAMI.2004.1265867
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Noise models are crucial for designing image restoration algorithms, generating synthetic training data, and predicting algorithm performance. There are two related but distinct estimation scenarios. The first is model calibration, where it is assumed that the input ideal bitmap and the output of the degradation process are both known. The second is the general estimation problem, where only the image from the output of the degradation process is given. While researchers have addressed the problem of calibration of models, issues with the general estimation problems have not been addressed in the literature. In this paper, we describe a parameter estimation algorithm for a morphological, binary, page-level image degradation model. The inputs to the estimation algorithm are 1) the degraded image and 2) information regarding the font type (italic, bold, serif, sans serif). We simulate degraded images using our model and search for the optimal parameter by looking for a parameter value for which the local neighborhood pattern distributions in the simulated image and the given degraded image are most similar. The parameter space is searched using a direct search optimization algorithm. We use the p-value of the Kolmogorov-Smirnov test as the measure of similarity between the two neighborhood pattern distributions. We show results of our algorithm on degraded document images.
引用
收藏
页码:520 / 524
页数:5
相关论文
共 21 条
[1]  
AHRALICK RM, 1992, ROBOT COMPUTER VISIO, V1
[2]  
AHRALICK RM, 1992, ROBOT COMPUTER VISIO, V2
[3]  
Baird H., 1990, Proceedings of the IAPR Workshop on Syntactic and Structural Pattern Recognition, P38
[4]  
Baird H. S., 1999, Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318), P459, DOI 10.1109/ICDAR.1999.791824
[5]   A rigorous framework for optimization of expensive functions by surrogates [J].
Booker A.J. ;
Dennis Jr. J.E. ;
Frank P.D. ;
Serafini D.B. ;
Torczon V. ;
Trosset M.W. .
Structural optimization, 1999, 17 (1) :1-13
[6]  
BOOKER AJ, 1998, OPTIMAL DESIGN CONTR, P49, DOI [10.1007/978-1-4612-1780-03, DOI 10.1007/978-1-4612-1780-03]
[7]  
GILL P, 1993, PRACTICAL OPTIMIZATI
[8]  
KANUNGO T, 1995, P SOC PHOTO-OPT INS, V2424, P86, DOI 10.1117/12.205268
[9]  
Kanungo T, 2000, IEEE T PATTERN ANAL, V22, P1209, DOI 10.1109/34.888707
[10]   NONLINEAR GLOBAL AND LOCAL DOCUMENT DEGRADATION MODELS [J].
KANUNGO, T ;
HARALICK, RM ;
PHILLIPS, I .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1994, 5 (03) :220-230