Reduced-Order Modeling with Artificial Neurons for Gravitational-Wave Inference

被引:63
作者
Chua, Alvin J. K. [1 ]
Galley, Chad R. [1 ]
Vallisneri, Michele [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
LANGEVIN;
D O I
10.1103/PhysRevLett.122.211101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gravitational-wave data analysis is rapidly absorbing techniques from deep learning, with a focus on convolutional networks and related methods that treat noisy time series as images. We pursue an alternative approach, in which waveforms are first represented as weighted sums over reduced bases (reduced-order modeling); we then train artificial neural networks to map gravitational-wave source parameters into basis coefficients. Statistical inference proceeds directly in coefficient space, where it is theoretically straightforward and computationally efficient. The neural networks also provide analytic waveform derivatives, which are useful for gradient-based sampling schemes. We demonstrate fast and accurate coefficient interpolation for the case of a four-dimensional binary-inspiral waveform family and discuss promising applications of our framework in parameter estimation.
引用
收藏
页数:7
相关论文
共 51 条
[1]  
Abadi M, 2015, 12 USENIX S OPERATIN
[2]   Properties of the Binary Black Hole Merger GW150914 [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW LETTERS, 2016, 116 (24)
[3]   GW150914: First results from the search for binary black hole coalescence with Advanced LIGO [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW D, 2016, 93 (12)
[4]   Asymptotic statistical theory of overtraining and cross-validation [J].
Amari, S ;
Murata, N ;
Muller, KR ;
Finke, M ;
Yang, HH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05) :985-996
[5]  
[Anonymous], P 14 INT C ART INT S
[6]  
[Anonymous], ARXIV180709787
[7]  
[Anonymous], ARXIV181105494
[8]  
[Anonymous], GRAVITATIONAL WAVE D
[9]  
[Anonymous], ARXIV170200786
[10]  
[Anonymous], 2015, P 2015 INT C LEARN R