A mutation in the Arabidopsis γ-tubulin-containing complex causes helical growth and abnormal microtubule branching

被引:80
作者
Nakamura, Masayoshi [1 ]
Hashimoto, Takashi [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300192, Japan
关键词
Arabidopsis thaliana; gamma-tubulin-containing complex; Microtubule nucleation; GCP2; Twisting; CORTICAL MICROTUBULES; CELL EXPANSION; RING COMPLEX; ORGANIZATION; NUCLEATION; DYNAMICS; KATANIN; PROTEIN; ARRAYS; ORIENTATION;
D O I
10.1242/jcs.044131
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Plant cortical microtubules are mainly nucleated on previously established microtubules, grow at a narrow range of angles to the wall of mother microtubules, and eventually are released from the nucleation sites. These nucleation events are thought to be regulated by gamma-tubulin-containing complexes. We here show that a null mutation of Arabidopsis GCP2, a core subunit of the gamma-tubulin-containing complex, severely impaired the development of male and female gametophytes. However, a missense mutation in the conserved grip1 motif, called spiral3, caused a left-handed helical organization of cortical microtubule arrays, and severe right-handed helical growth. The spiral3 mutation compromises interaction between GCP2 and GCP3, another subunit of the complex, in yeast. In the spiral3 mutant, microtubule dynamics and nucleation efficiency were not markedly affected, but nucleating angles were wider and more divergently distributed. A spiral3 katanin double mutant had swollen and twisted epidermal cells, and showed that the microtubule minus ends were not released from the nucleation sites, although the nucleating angles distributed in a similar manner to those in spiral3. These results show that Arabidopsis GCP2 has an important role in precisely positioning the gamma-tubulin-containing complex on pre-existing microtubules and in the proper organization of cortical arrays.
引用
收藏
页码:2208 / 2217
页数:10
相关论文
共 52 条
[1]   Altered microtubule dynamics by expression of modified α-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants [J].
Abe, T ;
Hashimoto, T .
PLANT JOURNAL, 2005, 43 (02) :191-204
[2]   Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana [J].
Abe, T ;
Thitamadee, S ;
Hashimoto, T .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (02) :211-220
[3]   CLASP Modulates Microtubule-Cortex Interaction during Self-Organization of Acentrosomal Microtubules [J].
Ambrose, J. Christian ;
Wasteneys, Geoffrey O. .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (11) :4730-4737
[4]   BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis [J].
Bichet, A ;
Desnos, T ;
Turner, S ;
Grandjean, O ;
Höfte, H .
PLANT JOURNAL, 2001, 25 (02) :137-148
[5]   γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis [J].
Binarová, P ;
Cenklová, V ;
Procházková, J ;
Doskocilová, A ;
Volc, J ;
Vrlík, M ;
Bögre, L .
PLANT CELL, 2006, 18 (05) :1199-1212
[6]   Visualization of cell microtubules in their native state [J].
Bouchet-Marquis, Cedric ;
Zuber, Benoit ;
Glynn, Anne-Marie ;
Eltsov, Mikhail ;
Grabenbauer, Markus ;
Goldie, Kenneth N. ;
Thomas, Daniel ;
Frangakis, Achilleas S. ;
Dubochet, Jacques ;
Chretien, Denis .
BIOLOGY OF THE CELL, 2007, 99 (01) :45-53
[7]   The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth [J].
Bouquin, T ;
Mattsson, O ;
Næsted, H ;
Foster, R ;
Mundy, J .
JOURNAL OF CELL SCIENCE, 2003, 116 (05) :791-801
[8]   A katanin-like protein regulates normal cell wall biosynthesis and cell elongation [J].
Burk, DH ;
Liu, B ;
Zhong, RQ ;
Morrison, WH ;
Ye, ZH .
PLANT CELL, 2001, 13 (04) :807-827
[9]   EB1 reveals mobile microtubule nucleation sites in Arabidopsis [J].
Chan, J ;
Calder, GM ;
Doonan, JH ;
Lloyd, CW .
NATURE CELL BIOLOGY, 2003, 5 (11) :967-971
[10]   NEW DATA ON THE MICROTUBULE SURFACE LATTICE [J].
CHRETIEN, D ;
WADE, RH .
BIOLOGY OF THE CELL, 1991, 71 (1-2) :161-174