Human follicle-stimulating hormone (FSH) receptor interacts with the adaptor protein APPL1 in HEK 293 cells: Potential involvement of the PI3K pathway in FSH signaling

被引:88
作者
Nechamen, CA
Thomas, RM
Cohen, BD
Acevedo, G
Poulikakos, PI
Testa, JR
Dias, JA
机构
[1] New York State Dept Hlth, David Axelrod Inst Publ Hlth, Wadsworth Ctr, Albany, NY 12208 USA
[2] SUNY Albany, Dept Biomed Sci, Albany, NY 12222 USA
[3] Fox Chase Canc Ctr, Human Genet Program, Philadelphia, PA 19111 USA
关键词
apoptosis; follicle-stimulating hormone; follicle-stimulating hormone receptor; mechanisms of hormone action; signal transduction;
D O I
10.1095/biolreprod.103.025833
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Selection of a dominant follicle that will ovulate likely occurs by activation of cell survival pathways and suppression of death-promoting pathways in a mechanism involving FSH and its cognate receptor (FSHR). A yeast two-hybrid screen of an ovarian cDNA library was employed to identify potential interacting partners with human FSHR intracellular loops 1 and 2. Among eight cDNA clones identified in the screen, APPL1 (adaptor protein containing PH domain, PTB domain, and leucine zipper motif; also known as APPL or DIP13alpha) was chosen for further analysis. APPL1 appears to coimmunoprecipitate with FSHR in HEK 293 cells stably expressing FSHR (293/FSHR cells), confirming APPL1 as a potential FSHR-interacting partner. The phosphorylation status of members of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway was also examined because of the proposed role of APPL1 in the antiapoptotic PI3K/Akt pathway. FOXO1a, also referred to as forkhead homologue in rhabdomyosarcoma, is a downstream effector in the pathway and tightly linked to expression of proapoptotic genes. FOXO1a, but not the upstream kinase Akt, is rapidly phosphorylated, and FOXO1 a is thereby inactivated when 293/FSHR cells are treated with FSH. In addition, FSHR coimmunoprecipitates with Akt. The identification of APPL1 as a potential interactor with FSHR and the finding that FOXO1a is phosphorylated in response to FSH provide a possible link between FSH and PI3K/Akt signaling, which may help to delineate a survival mechanism whereby FSH selects the dominant follicle to survive.
引用
收藏
页码:629 / 636
页数:8
相关论文
共 55 条
[1]   Follicle stimulating hormone-regulated expression of serum/glucocorticoid-inducible kinase in rat ovarian granulosa cells: A functional role for the spl family in promoter activity [J].
Alliston, TN ;
Maiyar, AC ;
Buse, P ;
Firestone, GL ;
Richards, JS .
MOLECULAR ENDOCRINOLOGY, 1997, 11 (13) :1934-1949
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Characterization of ovarian follicular wave dynamics in women [J].
Baerwald, AR ;
Adams, GP ;
Pierson, RA .
BIOLOGY OF REPRODUCTION, 2003, 69 (03) :1023-1031
[4]   Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1 [J].
Biggs, WH ;
Meisenhelder, J ;
Hunter, T ;
Cavenee, WK ;
Arden, KC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (13) :7421-7426
[5]  
Borg JP, 1996, MOL CELL BIOL, V16, P6229
[6]   Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J].
Brunet, A ;
Park, J ;
Tran, H ;
Hu, LS ;
Hemmings, BA ;
Greenberg, ME .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :952-965
[7]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[8]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[9]   Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a [J].
Castrillon, DH ;
Miao, LL ;
Kollipara, R ;
Horner, JW ;
DePinho, RA .
SCIENCE, 2003, 301 (5630) :215-218
[10]   Induction of apoptosis and G2/M cell cycle arrest by DCC [J].
Chen, YQ ;
Hsieh, JT ;
Yao, FY ;
Fang, BL ;
Pong, RC ;
Cipriano, SC ;
Krepulat, F .
ONCOGENE, 1999, 18 (17) :2747-2754