Holomorphic quantization on the torus and finite quantum mechanics

被引:28
作者
Athanasiu, GG
Floratos, EG
Nicolis, S
机构
[1] UNIV TOURS, DEPT PHYS, LAB MATH PHYS THEOR EP93, CNRS, F-37200 TOURS, FRANCE
[2] UNIV CRETE, DEPT PHYS, IRAKLION, CRETE, GREECE
[3] FORTH, IRAKLION, CRETE, GREECE
[4] DEMOCRITOS NATL RES CTR PHYS SCI, INP, AGHIA PARASKEVI 15310, ATHENS, GREECE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 21期
关键词
D O I
10.1088/0305-4470/29/21/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explicitly construct the quantization of classical linear maps of SL(2, R) on toroidal phase space, of arbitrary modulus, using the holomorphic (chiral) version of the metaplectic representation. We show that finite quantum mechanics (FQM) on tori of arbitrary integer discretization, is a consistent restriction of the holomorphic quantization of SL(2, Z) to the subgroup SL(2, Z)/Gamma(l), Gamma(l) being the principal congruent subgroup modl, on a finite dimensional Hilbert space. The generators of the 'rotation group' modl, O-l(2) subset of SL(2, l), for arbitrary values of l are determined as well as their quantum mechanical eigenvalues and eigenstates.
引用
收藏
页码:6737 / 6745
页数:9
相关论文
共 56 条
[1]   SUPERSTRING COLLISIONS AT PLANCKIAN ENERGIES [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1987, 197 (1-2) :81-88
[2]  
[Anonymous], ANN MATH STUDIES
[3]  
Arnold V., 1978, SPRINGER GRADUATE TE, V60
[4]  
Arnold V. I., 1968, Ergodic Problems of Classical Mechanics, V9
[5]   COHERENT STATES IN FINITE QUANTUM-MECHANICS [J].
ATHANASIU, GG ;
FLORATOS, EG .
NUCLEAR PHYSICS B, 1994, 425 (1-2) :343-364
[6]   IS COMPUTING WITH THE FINITE FOURIER-TRANSFORM PURE OR APPLIED MATHEMATICS [J].
AUSLANDER, L ;
TOLIMIERI, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :847-897
[7]   CHAOS ON THE PSEUDOSPHERE [J].
BALAZS, NL ;
VOROS, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03) :109-240
[8]  
BALIAN R, 1986, CR ACAD SCI I-MATH, V303, P773
[9]  
BEKENSTEIN J, 7 M GROSSM S GEN REL
[10]  
BEKENSTEIN J, 1980, PHYS TODAY