Target detection based on a dynamic subspace

被引:174
作者
Du, Bo [1 ]
Zhang, Liangpei [2 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Target detection; Hyperspectral images; Subspace learning; LINEAR DISCRIMINANT-ANALYSIS; HYPERSPECTRAL IMAGES; ANOMALY DETECTION; CLASSIFICATION; FUSION; MODELS;
D O I
10.1016/j.patcog.2013.07.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For hyperspectral target detection, it is usually the case that only part of the targets pixels can be used as target signatures, so can we use them to construct the most proper background subspace for detecting all the probable targets? In this paper, a dynamic subspace detection (DSD) method which establishes a multiple detection framework is proposed. In each detection procedure, blocks of pixels are calculated by the random selection and the succeeding detection performance distribution analysis. Manifold analysis is further used to eliminate the probable anomalous pixels and purify the subspace datasets, and the remaining pixels construct the subspace for each detection procedure. The final detection results are then enhanced by the fusion of target occurrence frequencies in all the detection procedures. Experiments with both synthetic and real hyperspectral images (HSI) evaluate the validation of our proposed DSD method by using several different state-of-the-art methods as the basic detectors. With several other single detectors and multiple detection methods as comparable methods, improved receiver operating characteristic curves and better separability between targets and backgrounds by the DSD methods are illustrated. The DSD methods also perform well with the covariance-based detectors, showing their efficiency in selecting covariance information for detection. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:344 / 358
页数:15
相关论文
共 57 条
  • [1] [Anonymous], 2007, Hyperspectral data exploitation: theory and applications
  • [2] Improved Hyperspectral Image Processing Algorithm Testing Using Synthetic Imagery and Factorial Designed Experiments
    Bellucci, Joseph P.
    Smetek, Timothy E.
    Bauer, Kenneth W.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03): : 1211 - 1223
  • [3] Bio-molecular cancer prediction with random subspace ensembles of support vector machines
    Bertoni, A
    Folgieri, R
    Valentini, G
    [J]. NEUROCOMPUTING, 2005, 63 : 535 - 539
  • [4] BACON: blocked adaptive computationally efficient outlier nominators
    Billor, N
    Hadi, AS
    Velleman, PF
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 34 (03) : 279 - 298
  • [5] Hyperspectral subspace identification
    Bioucas-Dias, Jose M.
    Nascimento, Jose M. P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2435 - 2445
  • [6] An unsupervised vector quantization-based target subspace projection approach to mixed pixel detection and classification in unknown background for remotely sensed imagery
    Brumbley, C
    Chang, CI
    [J]. PATTERN RECOGNITION, 1999, 32 (07) : 1161 - 1174
  • [7] Anomaly detection based on the statistics of hyperspectral imagery
    Catterall, S
    [J]. IMAGING SPECTROMETRY X, 2004, 5546 : 171 - 178
  • [8] Anomaly detection and classification for hyperspectral imagery
    Chang, CI
    Chiang, SS
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06): : 1314 - 1325
  • [9] Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    Chang, CI
    Du, Q
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03): : 608 - 619
  • [10] Constrained subpixel target detection for remotely sensed imagery
    Chang, CI
    Heinz, DC
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03): : 1144 - 1159