Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit

被引:381
作者
Schliesser, A. [1 ]
Arcizet, O. [1 ]
Riviere, R. [1 ]
Anetsberger, G. [1 ]
Kippenberg, T. J. [1 ,2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
QUANTUM-NOISE REDUCTION; CAVITY; RESONATOR; MOTION;
D O I
10.1038/NPHYS1304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of quantum measurement of mechanical motion, describing the mutual coupling of a meter and a measured object, predicts a variety of phenomena such as quantum backaction, quantum correlations and non-classical states of motion. In spite of great experimental efforts, mostly based on nano-electromechanical systems, probing these in a laboratory setting has as yet eluded researchers. Cavity optomechanical systems, in which a high-quality optical resonator is parametrically coupled to a mechanical oscillator, hold great promise as a route towards the observation of such effects with macroscopic oscillators. Here, we present measurements on optomechanical systems exhibiting radiofrequency (62-122 MHz) mechanical modes, cooled to very low occupancy using a combination of cryogenic precooling and resolved-sideband laser cooling. The lowest achieved occupancy is n similar to 63. Optical measurements of these ultracold oscillators' motion are shown to perform in a near-ideal manner, exhibiting an imprecision-backaction product about one order of magnitude lower than the results obtained with nano-electromechanical transducers.
引用
收藏
页码:509 / 514
页数:6
相关论文
共 41 条
[1]   Ultralow-dissipation optomechanical resonators on a chip [J].
Anetsberger, G. ;
Riviere, R. ;
Schliesser, A. ;
Arcizet, O. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2008, 2 (10) :627-633
[2]   High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. ;
Mackowski, J. -M. ;
Michel, C. ;
Pinard, L. ;
Francais, O. ;
Rousseau, L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[3]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[4]  
ARCIZET O, 2009, CRYOGENIC PROPERTIES
[5]   Ultra-high-Q toroid microcavity on a chip [J].
Armani, DK ;
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
NATURE, 2003, 421 (6926) :925-928
[6]   Scheme to probe the decoherence of a macroscopic object [J].
Bose, S ;
Jacobs, K ;
Knight, PL .
PHYSICAL REVIEW A, 1999, 59 (05) :3204-3210
[7]  
Braginsky V., 1995, QUANTUM MEASUREMENT
[8]   Low quantum noise tranquilizer for Fabry-Perot interferometer [J].
Braginsky, VB ;
Vyatchanin, SP .
PHYSICS LETTERS A, 2002, 293 (5-6) :228-234
[9]   Quantum nondemolition measurements: The route from toys to tools [J].
Braginsky, VB ;
Khalili, FY .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :1-11
[10]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708