Homoclinic phenomena in laser models

被引:4
作者
Shilnikov, AL
机构
关键词
chaos; bifurcations; normal forms; Lorenz attractor; lasers;
D O I
10.1016/S0898-1221(97)00126-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A description of the principal bifurcations which lead to the appearance of the Lorenz attractor is given for the 3D normal form for codimension-3 bifurcations of equilibria and periodic orbits in systems with symmetry. We pay special attention to two bifurcation points corresponding to the formation of a homoclinic butterfly of a saddle with unit saddle index and to a homoclinic butterfly with zero separatrix value.
引用
收藏
页码:245 / 251
页数:7
相关论文
共 24 条
[1]  
Abraham NB, 1988, PROGR OPTICS, VXXV, P1
[2]  
Afraimovich V. S., 1989, ENCY MATH SCI, VV
[3]  
AFRAIMOVICH VS, 1983, T MOSCOW MATH SOC, V2, P153
[4]  
[Anonymous], NONLINEAR DYNAMICS T
[5]   ASYMPTOTIC CHAOS [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICA D, 1985, 14 (03) :327-347
[6]  
ARNEODO A, 1985, GEOPHY ASTROPHYS FL, P1
[7]  
BELYKH VN, 1984, DIFF EQUAT+, V20, P1184
[8]   THE BIFURCATIONS OF SEPARATRIX CONTOURS AND CHAOS [J].
BYKOV, VV .
PHYSICA D, 1993, 62 (1-4) :290-299
[9]   BIFURCATIONS OF AN OPTICALLY PUMPED 3-LEVEL LASER MODEL [J].
FORYSIAK, W ;
MOLONEY, JV ;
HARRISON, RG .
PHYSICA D, 1991, 53 (01) :162-186
[10]   T-POINTS - A CODIMENSION 2 HETEROCLINIC BIFURCATION [J].
GLENDINNING, P ;
SPARROW, C .
JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (3-4) :479-488