Optimal tree approximation with wavelets

被引:39
作者
Baraniuk, R [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
来源
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII | 1999年 / 3813卷
关键词
wavelets; trees; nonlinear approximation; Besov space; optimization;
D O I
10.1117/12.366780
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The more a;priori knowledge we encode into a signal processing algorithm, the better performance we can expect. In this paper, we overview several approaches to capturing the structure of singularities ledges, ridges, etc.) in wavelet-based signal processing schemes. Leveraging results from-approximation theory, we discuss nonlinear approximations on trees and point out that an optimal tree approximant exists and is easily computed. The optimal tree approximation inspires a new hierarchical interpretation of the wavelet decomposition and a tree-based wavelet denoising algorithm that suppresses spurious noise bumps.
引用
收藏
页码:196 / 207
页数:10
相关论文
共 29 条
[1]  
ADELSON EH, 1991, 181 MIT MED LAB
[2]   A SIGNAL-DEPENDENT TIME-FREQUENCY REPRESENTATION - FAST ALGORITHM FOR OPTIMAL KERNEL DESIGN [J].
BARANIUK, RG ;
JONES, DL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (01) :134-146
[3]  
BARANIUK RG, 1992, THESIS U ILLINOIS UR
[4]   MODELING AND ESTIMATION OF MULTIRESOLUTION STOCHASTIC-PROCESSES [J].
BASSEVILLE, M ;
BENVENISTE, A ;
CHOU, KC ;
GOLDEN, SA ;
NIKOUKHAH, R ;
WILLSKY, AS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :766-784
[5]   A MULTISCALE RANDOM-FIELD MODEL FOR BAYESIAN IMAGE SEGMENTATION [J].
BOUMAN, CA ;
SHAPIRO, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (02) :162-177
[6]  
Burrus C.S., 1998, introduction to Wavelets and Wavelet Transforms-A Primer
[7]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335
[8]  
COHEN A, 1999, TREE APPROXIMATION E
[9]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[10]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816